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Motivating Example

Problem: find date for
CERG social evening

Setting: 7 agents,
8 alternatives

Preferences: agents
classify alternatives into
good, acceptable, or
unacceptable

Desideratum
(“Doodle”):

1. maximum
participation

2. good for many
agents
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Research Question

Observation: achieve desideratum → not strategyproof

Strategyproof: Serial Dictatorship → fail desideratum

Problem: strategyproofness in conflict with other desiderata
(Gibbard, 1973, 1977; Satterthwaite, 1975)

Intermediate: randomize → intermediate mechanism?

Question: how to make optimal trade-offs when designing
ordinal mechanisms?
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Main Result

Formalize (welfare) deficit
and manipulability

Optimal: lowest deficit
s.t. manipulability ≤ ε1.

Pareto frontier: set of
optimal mechanisms

Structural characterization:

#1 Solve LP at finite number of
supporting manipulability bounds
ε0 < . . . < εK

#2 Construct hybrids at intermediate ε

→ Pareto frontier computable

1

10

0

Manipulability ε

D
efi

ci
t
δ

ε1

Optimal mechanism

Pareto frontier

ε0

ε1

ε2 ε3

ε = (1 − β)ε1 + βε2

hβ = (1 − β)ϕ1 + βϕ2
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Related Work

Domain restrictions:

Single-peaked preferences (Moulin, 1980)

Random assignment (Hylland and Zeckhauser, 1979; Abdulkadiroğlu and
Sönmez, 1998; Bogomolnaia and Moulin, 2001)

This talk: full & restricted domains

Relaxing strategyproofness:

Strategyproofness in the Large (Azevedo and Budish, 2012)

Approximate strategyproofness (Carroll, 2013)

This talk: ε-approximate strategyproofness

Trade-offs:

Approximation of efficient mechanisms in large markets
(Procaccia, 2010; Birrell and Pass, 2011)

SD-efficiency versus (weak) SD-strategyproofness of random mechanisms
(Aziz, Brandl and Brandt, 2014)

This talk: finite setting & exact trade-offs
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Formal Model

Agents N = {1, . . . , n}, denoted i

Alternatives M = {1, . . . ,m}, denoted a, b, j

Preference order Pi over M:

Pi : a � b ⇔ i weakly prefers a to b
Pi : a ∼ b ⇔ Pi : a � b & Pi : b � a (indifference)
Pi : a � b ⇔ Pi : a � b & Pi : b � a (strict preference)
P space of preference orders

Preference profile P = (P1, . . . ,Pn) = (Pi ,P−i ) ∈ Pn

Random mechanism ϕ : Pn → ∆(M)

ϕ(P) = (x1, . . . , xm), where ϕj(P) = xj probability for j
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Manipulability

vNM utilities ui : M → [0, 1] (i.e., bounded),
ui (a) ≥ ui (b) ⇔ Pi : a � b, denoted ui ∼ Pi

ϕ strategyproof if for all profiles P ∈ Pn, agents i ∈ N,
utilities ui ∼ Pi , misreports P ′i ∈ P:

Eϕ(P′i ,P−i ) [ui ]− Eϕ(Pi ,P−i ) [ui ] ≤ 0

Idea: limit gain from manipulation

ϕ ε-approximately strategyproof (ε-ASP) if for all profiles
P ∈ Pn, agents i ∈ N, utilities ui ∼ Pi , misreports P ′i ∈ P:

Eϕ(P′i ,P−i ) [ui ]− Eϕ(Pi ,P−i ) [ui ] ≤ ε

Manipulability of mechanism ϕ

ε(ϕ) = min{ε′ ∈ [0, 1] : ϕ is ε′-approximately strategyproof}
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Desideratum: Welfare & Deficit

Encoding desiderata

Welfare function w : M × Pn → [0, 1],
w(j ,P) welfare from j at P

, e.g.,

Positional scoring: w(j ,P) ∼ score of j at P
Pareto optimality: w(j ,P) = 1{j not Pareto dominated at P}

. . . or doodle:

w(j ,P) =

{
#{i : j good for i}/n, if participation maximal at j ,
0, else

Welfare of lottery x : w(x ,P) =
∑

j∈M w(j ,P) · xj
Interpretation: expected score, probability of optimality

Measuring performance

Welfare deficit of lottery x at P

δ(x ,P) = max
j∈M

(w(j ,P))− w(x ,P)

Welfare deficit of mechanism ϕ

δ(ϕ) = max
P∈Pn

δ(ϕ(P),P)
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. . . or doodle:

w(j ,P) =

{
#{i : j good for i}/n, if participation maximal at j ,
0, else

Welfare of lottery x : w(x ,P) =
∑

j∈M w(j ,P) · xj
Interpretation: expected score, probability of optimality

Measuring performance

Welfare deficit of lottery x at P

δ(x ,P) = max
j∈M

(w(j ,P))− w(x ,P)

Welfare deficit of mechanism ϕ

δ(ϕ) = max
P∈Pn

δ(ϕ(P),P)
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Measures

1
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Manipulability ε

Deficit δ
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Fix problem (N,M, δ)

(ε(ϕ), δ(ϕ)) ∈ [0, 1]× [0, 1] signature
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#1 Optimal Mechanisms
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Signature of optimal mechanism

Definition (Optimal mechanisms)

Opt(ε) = {ϕ : ϕ is ε-ASP, δ(ϕ) = min{δ(ϕ′) : ϕ′ is ε-ASP}}

Opt(ε) 6= ∅
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#1 Optimal Mechanisms

Opt(ε) solution to optimization problem:

minimize δ(ϕ) (minimize deficit)
subject to ϕ random mechanism

ϕ ε-approx. SP

← Uncountable
Finite, linear

Theorem (Finite Equivalent Set of Linear Constraints)

ϕ ε-approximately strategyproof if and only if for all profiles
P ∈ Pn, agents i ∈ N, misreports P ′i ∈ P, indices k ∈ {1, . . . ,m}:∑

j∈M:rank�i
(j)≤k

ϕj(P
′
i ,P−i )− ϕj(Pi ,P−i ) ≤ ε
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#2 Hybrid Mechanisms
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Idea: “mix” mechanisms for intermediate signatures

Definition (β-hybrid)

hβ = (1− β)ϕ+ βψ, β ∈ [0, 1]

Timo Mennle & Sven Seuken – University of Zurich 17 / 28



#2 Hybrid Mechanisms

1

10

0

Manipulability ε

D
efi

ci
t
δ

?

Idea: “mix” mechanisms for intermediate signatures

Definition (β-hybrid)

hβ = (1− β)ϕ+ βψ, β ∈ [0, 1]

Timo Mennle & Sven Seuken – University of Zurich 17 / 28



#2 Hybrid Mechanisms

1

10

0

Manipulability ε

D
efi

ci
t
δ

?

Idea: “mix” mechanisms for intermediate signatures

Definition (β-hybrid)

hβ = (1− β)ϕ+ βψ, β ∈ [0, 1]

Timo Mennle & Sven Seuken – University of Zurich 17 / 28



#2 Hybrid Mechanisms

Theorem (Guarantees for Hybrids)

For any mechanisms ϕ,ψ and β ∈ [0, 1],

ε(hβ) ≤ (1− β)ε(ϕ) + βε(ψ),

δ(hβ) ≤ (1− β)δ(ϕ) + βδ(ψ)

1
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(1 − β)(ε(ϕ), δ(ϕ)) + β(ε(ψ), δ(ψ))

(ε(ϕ), δ(ϕ))

(ε(ψ), δ(ψ))

→ Anonymity and neutrality are “free”
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Pareto Frontier - Characterization Result

Result (informal):

Pareto frontier set of optimal mechanisms

Finite set of supporting manipulability bounds → use LP

Linear for intermediate manipulability bounds → use hybrids
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Pareto Frontier - Characterization Result

Result (formal):

ε̄ = min{ε ∈ [0, 1] | δ(ε) = 0}

Pareto frontier Pf =
⋃
ε∈[0,ε̄] Opt(ε): no strict reduction of

deficit without strict increase of manipulability

Theorem (Characterization of Pf)

Given a problem (N,M, δ), there exist finitely many supporting
manipulability bounds

0 = ε0 < . . . < εK = ε̄,

such that for any [εk−1, εk ] and ε = (1− β)εk−1 + βεk :

Opt(ε) = (1− β)Opt(εk−1) + βOpt(εk),

δ(ε) = (1− β)δ(εk−1) + βδ(εk).
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Pareto Frontier - Trade-offs

Properties of signature plot ε 7→ δ(ε)

monotonic & decreasing → trade-offs

convex → decreasing marginal reduction of deficit

continuous → smooth change

piecewise linear → Pf computable
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Pareto Frontier - Computation

Algorithm compute Opt(εk) for all k ∈ {0, . . . ,K}:
Interpolate → potential supporting manipulability bound ε

Compute δ(ε) → verify/discard ε

Repeat . . .
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Runtime: at most 4K + log2(1/ε1)− 1 executions of LP
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#3 Example (1/2)

Problem: 3 agents, 3 alternatives, only strict preferences,
welfare function: positional scoring v = (1, 0, 0) (Plurality)

Result:

Random Dictatorship optimal strategyproof mechanism

Uniform Plurality least manipulable efficient mechanism

No other supporting bounds

→ hybrids optimal

2/9

1/9

11/3 2/30

0

Manipulability ε

Deficit δ

Opt(0), e.g., Random Dictatorship

Opt(1/3), e.g., Uniform Plurality
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#3 Example (2/2)

Problem: 3 agents, 3 alternatives, only strict preferences,
welfare function: positional scoring v = (1, 1, 0) (Veto)

Results:

Random Duple optimal strategyproof mechanism

Uniform Veto least manipulable efficient mechanism

Other supporting bounds ε1 = 1/21, ε2 = 1/12

2/9

1/9

11/20

0

Manipulability ε

Deficit δ

Opt(1/21) with δ(1/21) = 10/63
Opt(1/12) with δ(1/12) = 5/36

Hyb. of Random Duple & Uniform Veto

Opt(1/2), e.g., Uniform Veto

Opt(0), e.g., Random Duple

Timo Mennle & Sven Seuken – University of Zurich 25 / 28



#3 Example (2/2)

Problem: 3 agents, 3 alternatives, only strict preferences,
welfare function: positional scoring v = (1, 1, 0) (Veto)
Results:

Random Duple optimal strategyproof mechanism

Uniform Veto least manipulable efficient mechanism

Other supporting bounds ε1 = 1/21, ε2 = 1/12

2/9

1/9

11/20

0

Manipulability ε

Deficit δ

Opt(1/21) with δ(1/21) = 10/63
Opt(1/12) with δ(1/12) = 5/36

Hyb. of Random Duple & Uniform Veto

Opt(1/2), e.g., Uniform Veto

Opt(0), e.g., Random Duple

Timo Mennle & Sven Seuken – University of Zurich 25 / 28



#3 Example (2/2)

Problem: 3 agents, 3 alternatives, only strict preferences,
welfare function: positional scoring v = (1, 1, 0) (Veto)
Results:

Random Duple optimal strategyproof mechanism

Uniform Veto least manipulable efficient mechanism

Other supporting bounds ε1 = 1/21, ε2 = 1/12

2/9

1/9

11/20

0

Manipulability ε

Deficit δ

Opt(1/21) with δ(1/21) = 10/63
Opt(1/12) with δ(1/12) = 5/36

Hyb. of Random Duple & Uniform Veto

Opt(1/2), e.g., Uniform Veto

Opt(0), e.g., Random Duple

Timo Mennle & Sven Seuken – University of Zurich 25 / 28



#3 Example (2/2)

Problem: 3 agents, 3 alternatives, only strict preferences,
welfare function: positional scoring v = (1, 1, 0) (Veto)
Results:

Random Duple optimal strategyproof mechanism

Uniform Veto least manipulable efficient mechanism

Other supporting bounds ε1 = 1/21, ε2 = 1/12

2/9

1/9

11/20

0

Manipulability ε

Deficit δ

Opt(1/21) with δ(1/21) = 10/63
Opt(1/12) with δ(1/12) = 5/36

Hyb. of Random Duple & Uniform Veto

Opt(1/2), e.g., Uniform Veto

Opt(0), e.g., Random Duple

Timo Mennle & Sven Seuken – University of Zurich 25 / 28



#3 Example (2/2)

Problem: 3 agents, 3 alternatives, only strict preferences,
welfare function: positional scoring v = (1, 1, 0) (Veto)
Results:

Random Duple optimal strategyproof mechanism

Uniform Veto least manipulable efficient mechanism

Other supporting bounds ε1 = 1/21, ε2 = 1/12

2/9

1/9

11/20

0

Manipulability ε

Deficit δ

Opt(1/21) with δ(1/21) = 10/63
Opt(1/12) with δ(1/12) = 5/36

Hyb. of Random Duple & Uniform Veto

Opt(1/2), e.g., Uniform Veto

Opt(0), e.g., Random Duple

Timo Mennle & Sven Seuken – University of Zurich 25 / 28



Agenda

1 Preliminaries

2 #1 Optimal Mechanisms

3 #2 Hybrid Mechanisms

4 Pareto Frontier

5 Generality and Conclusion

Timo Mennle & Sven Seuken – University of Zurich 26 / 28



Generality

Ordinal domain restrictions

Assumption: full utility
Examples: strict preferences, assignment, matching

Desiderata and welfare functions:

Assumption: linearity of welfare for lotteries
Binary properties, e.g., Pareto optimality, Condorcet
consistency, unanimity, v -rank efficiency (assignment), stability
(matching)
Quantified properties, e.g., positional scoring, v -rank value
(assignment), min. number of blocking pairs (matching)
Target mechanisms and correspondences
Logical combinations: min → “and,” max → “or”

Deficit notions:

Used absolute and worst-case
Relative (i.e., normalized)
Ex-ante (i.e., expectation wrt. prior over preferences)
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Conclusion

Problem: trade off manipulability ε(ϕ) and deficit δ(ϕ)

Results: characterization of Pareto frontier:
there exist finitely many supporting manipulability bounds

0 = ε0 < . . . < εK = ε̄,

such that

At εk : optimal mechanisms given by linear program

At ε ∈ (εk−1, εk): optimal hybrids of ϕk−1 and ϕk

2/9

1/9

11/3 2/30

0

Manipulability ε

Deficit δ
Opt(0), e.g., Rand. Dict.

Opt(1/3), e.g., Unif. Plu.

2/9

1/9

11/20

0

Manipulability ε

Deficit δ

Opt(1/21) with δ(1/21) = 10/63
Opt(1/12) with δ(1/12) = 5/36

Opt(1/2), e.g., Uniform Veto

Opt(0), e.g., Random Duple

Thank you!
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