The Pareto Frontier for Random Mechanisms

Timo Mennle & Sven Seuken, University of Zurich, Switzerland

Meeting of COST Action on Computational Social Choice, Istanbul Bilgi University, Turkey, November 2, 2015

- **Problem:** find date for CERG social evening
- Setting: 7 agents, 8 alternatives
- **Preferences:** agents classify alternatives into good, acceptable, or unacceptable
- Desideratum ("Doodle"):
 - 1. maximum participation
 - 2. *good* for many agents

Doodle	★ Funktionen	👾 Preise	Konto erstellen E	inloggen
Gemeinsam einen Termin finden				
Geben Sie Ihren Namen im Eingabefeld unt	en ein, und wählen Sie die Termin	e, an denen Sie.	Zeit naben.	
Geben Sie Ihren Namen im Eingabefeld unt		e, an denen Sie.	zeit naben.	

	Do 5	Mo 9	Di 10	Mi 11	Do 12	Mi 18	Do 19
7 Teilnehmer	18:00 - 23:00						
Sven Seuken	()	1	1	()	1	1	1
Steffen Schuldenzucl	1	1	()	1	1	()	()
Dmitry Moor	1	()	()	1	1	1	1
1 Timo Mennle		1	1	1	()	1	()
Ludwig Dierks	()	1	1	()	()	()	()
Gianluca Brero	()	1	1	1	()	1	()
1 Mike Shann	1	1	()	1	()	()	1
1 Ihr Name	Ja (Ja) Nein						
Ja Wennsseinmuss Nein	3 3 1	6 1 0	4 3 0	5 2 0	3 4 0	4 3 0	3 4 0
					Ich kann	nicht S	peicherr

- **Problem:** find date for CERG social evening
- Setting: 7 agents, 8 alternatives
- **Preferences:** agents classify alternatives into good, acceptable, or unacceptable
- Desideratum ("Doodle"):
 - 1. maximum participation
 - 2. *good* for many agents

Doodle				🕈 Funkti	onen 🤟	₩ Preise	Konto	erstellen Einlo
Gemeinsam einen Ter Geben Sie Ihren Namen im B			und wähler	n Sie die Te	ermine, an	denen Sie J	Zeit haben.	
CERG-Outing		1 O vor	weniger al	s einer Min	iute			
Dinner (http://www.oepfelch		_		nd: Spectr	e)			
Tabellen-Ansicht Kal	ender-Ansi	cht 🔒						
	Novemb Do 5	er 2015 Mo 9	Di 10				Do 19	
7 Teilnehmer	18:00 - 23:00	18:00 - 23:00	18:00 – 23:00	18:00 - 23:00	18:00 - 23:00	18:00 - 23:00	18:00 - 23:00	
Sven Seuken	()	1	1	()	1	1	1	
Steffen Schuldenzucl	1	1	()	1	1	()	()	
Dmitry Moor	1	()	()	1	1	1	1	
Dmitry Moor Timo Mennle	v	(J) J	() 1	3 - 3) ())	3	✓ (♪)	

Ja Ja (Ja) (Ja) Nein Nein

(Ja)

Ich kann nicht

Gianluca Brero

Wennsseinmuss

Ja (Ja)

Mike Shann

- **Problem:** find date for CERG social evening
- Setting: 7 agents, 8 alternatives
- **Preferences:** agents classify alternatives into good, acceptable, or unacceptable
- Desideratum ("Doodle"):
 - 1. maximum participation
 - 2. *good* for many agents

Doodle				🖈 Funktio	onen vi	₩ Preise	Konto er	stellen Ei
Gemeinsam einen Terr Geben Sie Ihren Namen im E			und wählei	n Sie die Te	rmine, an (denen Sie Z	leit haben.	
CERG-Outing Umfrage von Sven Seuken Dinner (http://www.oepfelcha	±7 ♥) + Movie (
Tabellen-Ansicht Kale	Novemb		Di 10	Mi 11	Do 12	Mi 18	Do 19	
7 Teilnehmer	18:00 - 23:00							
Sven Seuken	()	1	1	()	1	1	1	
Steffen Schuldenzucl	1	1	()	1	1	()	()	
Dmitry Moor	1		()	1	1	1	1	
1 Timo Mennle		1	1	1	()	1	<i>(I</i>)	
Ludwig Dierks	()	1	1	()	()	()	(1)	
Gianluca Brero	()	1	1	1	()	1	(1)	
Mike Shann	1	1	()	1	()	()	1	
1 Ihr Name	Ja (Ja) Nein							
Ja Wennsseinmuss	3	6	4	5	3	4	3	

Ich kann nicht

- **Problem:** find date for CERG social evening
- Setting: 7 agents, 8 alternatives
- **Preferences:** agents classify alternatives into good, acceptable, or unacceptable
- Desideratum ("Doodle"):
 - 1. maximum participation
 - 2. *good* for many agents

18:00 - 18:00 - 18:00 - 18:00 - 18:00 - 1	ien Sie Zé	e Zeit hai	iben.
Umfrage von Sven Seuken 1 Øvor weniger als einer klinute Dinner (http://www.oepfeichammer.ch/) + Movie (James Bond: Spectre) Tabellen-Ansicht KallenderAnsicht Tabellen-Ansicht KallenderAnsicht Image: Comparison of the state			
November 2015 Mo1 Mo1 Do 12 I 0.5 0.5 0.5 0.100 Mo11 Do 12 I 1600- 1500- 1500- 1500- 1500- 1500- 1500- 2300-			
Do 5 Mo 9 Di 10 Mi 11 Do 12 I 1800- 2300			
7 Teilnehmer 23:00 23:00 23:00 23:00 23:00 2	Wi 18	Do '	19
Sven Seuken (J) J J (J) J	18:00 - 23:00	- 18:0 23:0	
	1	J	1
Steffen Schuldenzuci J J (J) J J		()	1)
1 Dmitry Moor V (V) V V			

Ja Ja Ja (Ja) (Ja) (Ja) Nein Nein Neir

Ich kann nicht

Ja (Ja)

Ludwig Dierks

Gianluca Brero

Wennsseinmuss

Mike Shann

- **Problem:** find date for CERG social evening
- Setting: 7 agents, 8 alternatives
- **Preferences:** agents classify alternatives into good, acceptable, or unacceptable
- Desideratum ("Doodle"):
 - 1. maximum participation
 - 2. *good* for many agents

Doodle	★ Funktionen	👾 Preise	Konto erstellen E	inloggen
Gemeinsam einen Termin finden				
Geben Sie Ihren Namen im Eingabefeld unt	en ein, und wählen Sie die Termin	e, an denen Sie.	Zeit naben.	
Geben Sie Ihren Namen im Eingabefeld unt		e, an denen Sie.	zeit naben.	

	Do 5	Mo 9	Di 10	Mi 11	Do 12	Mi 18	Do 19
7 Teilnehmer	18:00 - 23:00						
Sven Seuken	()	1	1	()	1	1	1
Steffen Schuldenzucl	1	1	()	1	1	()	()
Dmitry Moor	1	()	()	1	1	1	1
1 Timo Mennle		1	1	1	()	1	()
Ludwig Dierks	()	1	1	()	()	()	()
Gianluca Brero	()	1	1	1	()	1	()
1 Mike Shann	1	1	()	1	()	()	1
1 Ihr Name	Ja (Ja) Nein						
Ja Wennsseinmuss Nein	3 3 1	6 1 0	4 3 0	5 2 0	3 4 0	4 3 0	3 4 0
					Ich kann	nicht S	peicherr

- **Problem:** find date for CERG social evening
- Setting: 7 agents, 8 alternatives
- **Preferences:** agents classify alternatives into good, acceptable, or unacceptable
- Desideratum ("Doodle"):
 - 1. maximum participation
 - 2. *good* for many agents

Doodle			🖈 Funkti	onen 🤟	⊯ Preise	Konto e	erstellen	Einlogg
Gemeinsam einen Ter Geben Sie Ihren Namen im I		n, und wähle	n Sie die Te	rmine, an	denen Sie 2	leit haben.		
CERG-Outing	1							
Umfrage von Sven Seuken	±7 #1 @v	or weniger a	Is einer Min	ute				
Umfrage von Sven Seuken								
Dinner (http://www.oepfelch		e (James Bo						
Dinner (http://www.oepfelch	nammer.ch/) + Movie	e (James Bo			III Mi 18	Do 19		
Dinner (http://www.oepfelch	ender-Ansicht	e (James Bo	nd: Spectr	e)	Mi 18 18:00 – 23:00	Do 19 18:00 - 23:00		

	Do 5	Mo 9	Di 10	Mi 11	Do 12	Mi 18	Do 19
7 Teilnehmer	18:00 - 23:00						
Sven Seuken	()	1	1	()	1	1	1
Steffen Schuldenzucl	1	_	()	1	_	()	()
Dmitry Moor	1	()	()	1	1	1	1
I Timo Mennle		1	1	1	()	1	()
Ludwig Dierks	()	1	1	()	()	()	()
Gianluca Brero	()	1	1	1	()	1	()
1 Mike Shann	1	1	()	1	()	()	1
1 Ihr Name	Ja (Ja) Nein						
Ja Wennsseinmuss Nein	3 3 1	6 1 0	4 3 0	5 2 0	3 4 0	4 3 0	3 4 0
					Ich kann	nicht	peichern

- **Problem:** find date for CERG social evening
- Setting: 7 agents, 8 alternatives
- **Preferences:** agents classify alternatives into good, acceptable, or unacceptable
- Desideratum ("Doodle"):
 - 1. maximum participation
 - 2. *good* for many agents

Doodle			★ Funkti	onen y	₩ Preise	Konto	erstellen	Einlog
Gemeinsam einen Ter Geben Sie Ihren Namen im E		in, und wähle	n Sie die Te	rmine, an	denen Sie 2	Zeit haben.		
CERG-Outing	I							
Umfrage von Sven Seuken	17 #1 0	vor weniger a	ls einer Min	ute				
Dinner (http://www.oepfelch	ammer.ch/) + Mov	ie (James Bo	nd: Spectr	e)				
Dinner (http://www.oepfelch	ammer.ch/) + Mov	ie (James Bo	ind: Spectr	e)				
		ie (James Bo	nd: Spectr	e)				
			nd: Spectr	e)				
			nd: Spectr	e)				
	ender-Ansicht		nd: Spectr	e) Do 12	Mi 18	Do 19		
Tabellen-Ansicht Kate	November 2015 Do 5 Mo 9 18:00 – 18:00	Di 10 - 18:00 -	Mi 11 18:00 -	Do 12 18:00 -	18:00 -	18:00 -		
Tabellen-Ansicht Kalt 7 Teilnehmer	November 2015 Do 5 Mo 9 18:00 – 18:00 23:00 23:00	Di 10 - 18:00 - 23:00	Mi 11 18:00 - 23:00	Do 12				
Tabellen-Ansicht Kate	November 2015 Do 5 Mo 9 18:00 – 18:00	Di 10 - 18:00 -	Mi 11 18:00 -	Do 12 18:00 -	18:00 - 23:00	18:00 -		
Tabellen-Ansicht Kalt 7 Teilnehmer	November 2015 Do 5 Mo 9 18:00 – 18:00 23:00 23:00	Di 10 - 18:00 - 23:00	Mi 11 18:00 - 23:00	Do 12 18:00 -	18:00 -	18:00 -		

over oeuken			· ·		× .		×
Steffen Schuldenzucl	1	1	()	1	_	()	()
Dmitry Moor	1	()	()	1	_	1	1
1 Timo Mennle		1	1	1	()	1	()
Ludwig Dierks	()	1	1	()	()	()	()
Gianluca Brero	()	1	1	1	()	1	()
1 Mike Shann	1	1	()	1	()	()	1
1 Ihr Name	Ja (Ja) Nein						
Ja Wennsseinmuss Nein	3 3 1	6 1 0	4 3 0	5 2 0	3 4 0	4 3 0	3 4 0
					Ich kann	nicht	peichern

- **Problem:** find date for CERG social evening
- Setting: 7 agents, 8 alternatives
- **Preferences:** agents classify alternatives into good, acceptable, or unacceptable
- Desideratum ("Doodle"):
 - 1. maximum participation
 - 2. *good* for many agents

Doodle				🖈 Funkti	onen 🤫	Preise	Konto	erstellen
Gemeinsam einen Terr Geben Sie Ihren Namen im E		iten ein, u	und wähler	n Sie die Te	rmine, an (fenen Sie 2	Zeit haben.	
CERG-Outing								
Umfrage von Sven Seuken	±7 ≢1	O vor	weniger al	s einer Min	ute			
Dinner (http://www.oepfelcha	ammer.ch/) +	Movie (J	James Bo	nd: Spectr	e)			
Dinner (http://www.oepfelcha	ammer.ch/) +	Movie (J	James Bo	nd: Spectr	e)			
	ammer.ch/) + ender-Ansicht	_	James Bo	nd: Spectr	e)			
	ender-Ansicht	-	James Bo	nd: Spectr	e)			
	ender-Ansicht November 2	-	James Boi	Mi 11	e) Do 12	Mi 18	Do 19	
Tabellen-Ansicht Kale	November 2 Do 5	2015				Mi 18 18:00 –	Do 19 18:00 –	
Tabellen-Ansicht Kale	November 2 Do 5 18:00 – 1	2015 Mo 9	Di 10	Mi 11	Do 12			
Tabellen-Ansicht Kale	November 2 Do 5 18:00 – 1	2015 Mo 9 18:00 –	Di 10 18:00 –	Mi 11 18:00 –	Do 12 18:00 -	18:00 -	18:00 -	
Tabellen-Ansicht Kale	nder-Ansicht November 2 Do 5 N 18:00 – 1 23:00 2	2015 Mo 9 18:00 –	Di 10 18:00 –	Mi 11 18:00 - 23:00	Do 12 18:00 -	18:00 – 23:00	18:00 -]
7 Teilnehmer Sven Seuken	ender-Ansicht November 2 Do 5 N 18:00 - 1 23:00 2 ()	2015 Mo 9 18:00 –	Di 10 18:00 - 23:00	Mi 11 18:00 - 23:00	Do 12 18:00 -	18:00 - 23:00	18:00 - 23:00]

Ja Ja (Ja) (Ja) Nein Nein Ja (Ja)

Ich kann nicht

Ja (Ja)

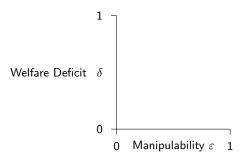
Ludwig Dierks

Gianluca Brero

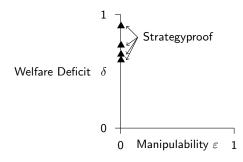
Wennsseinmuss

Mike Shann

 \bullet Observation: achieve desideratum \rightarrow not strategyproof

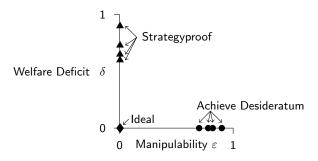

- \bullet Observation: achieve desideratum \rightarrow not strategyproof
- \bullet Strategyproof: Serial Dictatorship \rightarrow fail desideratum

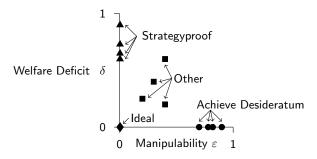
- Observation: achieve desideratum \rightarrow not strategyproof
- Strategyproof: Serial Dictatorship \rightarrow fail desideratum
- **Problem:** strategyproofness in conflict with other desiderata (Gibbard, 1973, 1977; Satterthwaite, 1975)

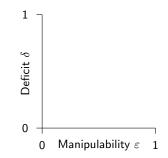

- Observation: achieve desideratum \rightarrow not strategyproof
- Strategyproof: Serial Dictatorship \rightarrow fail desideratum
- **Problem:** strategyproofness in conflict with other desiderata (Gibbard, 1973, 1977; Satterthwaite, 1975)
- Intermediate: randomize → intermediate mechanism?

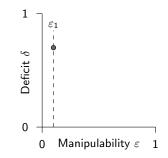
- Observation: achieve desideratum \rightarrow not strategyproof
- Strategyproof: Serial Dictatorship \rightarrow fail desideratum
- **Problem:** strategyproofness in conflict with other desiderata (Gibbard, 1973, 1977; Satterthwaite, 1975)
- Intermediate: randomize \rightarrow intermediate mechanism?
- **Question:** how to make optimal trade-offs when designing ordinal mechanisms?

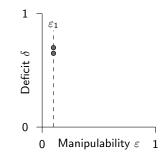
- Observation: achieve desideratum \rightarrow not strategyproof
- Strategyproof: Serial Dictatorship \rightarrow fail desideratum
- **Problem:** strategyproofness in conflict with other desiderata (Gibbard, 1973, 1977; Satterthwaite, 1975)
- Intermediate: randomize \rightarrow intermediate mechanism?
- **Question:** how to make optimal trade-offs when designing ordinal mechanisms?

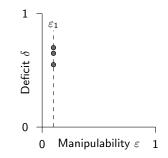

- Observation: achieve desideratum \rightarrow not strategyproof
- Strategyproof: Serial Dictatorship \rightarrow fail desideratum
- **Problem:** strategyproofness in conflict with other desiderata (Gibbard, 1973, 1977; Satterthwaite, 1975)
- Intermediate: randomize \rightarrow intermediate mechanism?
- **Question:** how to make optimal trade-offs when designing ordinal mechanisms?

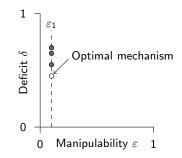

- Observation: achieve desideratum \rightarrow not strategyproof
- Strategyproof: Serial Dictatorship \rightarrow fail desideratum
- **Problem:** strategyproofness in conflict with other desiderata (Gibbard, 1973, 1977; Satterthwaite, 1975)
- Intermediate: randomize \rightarrow intermediate mechanism?
- **Question:** how to make optimal trade-offs when designing ordinal mechanisms?

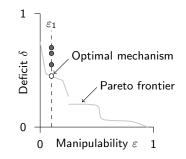

- Observation: achieve desideratum \rightarrow not strategyproof
- Strategyproof: Serial Dictatorship \rightarrow fail desideratum
- **Problem:** strategyproofness in conflict with other desiderata (Gibbard, 1973, 1977; Satterthwaite, 1975)
- Intermediate: randomize \rightarrow intermediate mechanism?
- **Question:** how to make optimal trade-offs when designing ordinal mechanisms?


- Observation: achieve desideratum \rightarrow not strategyproof
- Strategyproof: Serial Dictatorship \rightarrow fail desideratum
- **Problem:** strategyproofness in conflict with other desiderata (Gibbard, 1973, 1977; Satterthwaite, 1975)
- Intermediate: randomize \rightarrow intermediate mechanism?
- **Question:** how to make optimal trade-offs when designing ordinal mechanisms?

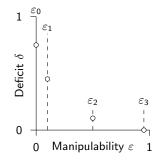

• Formalize (welfare) deficit and manipulability


- Formalize (welfare) deficit and manipulability
- Optimal: lowest deficit
 s.t. manipulability ≤ ε₁.


- Formalize (welfare) deficit and manipulability
- Optimal: lowest deficit
 s.t. manipulability ≤ ε₁.


- Formalize (welfare) deficit and manipulability
- Optimal: lowest deficit
 s.t. manipulability ≤ ε₁.

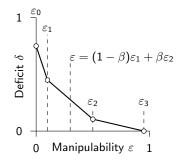
- Formalize (welfare) deficit and manipulability
- Optimal: lowest deficit
 s.t. manipulability ≤ ε₁.


- Formalize (welfare) deficit and manipulability
- Optimal: lowest deficit
 s.t. manipulability ≤ ε₁.
- Pareto frontier: set of optimal mechanisms

- Formalize (welfare) deficit and manipulability
- Optimal: lowest deficit
 s.t. manipulability ≤ ε₁.
- Pareto frontier: set of optimal mechanisms

Structural characterization:

#1 Solve LP at finite number of supporting manipulability bounds $\varepsilon_0 < \ldots < \varepsilon_K$

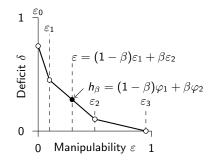


- Formalize (welfare) deficit and manipulability
- Optimal: lowest deficit
 s.t. manipulability ≤ ε₁.
- Pareto frontier: set of optimal mechanisms

Structural characterization:

#1 Solve LP at finite number of supporting manipulability bounds $\varepsilon_0 < \ldots < \varepsilon_K$

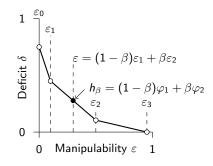
#2 Construct hybrids at intermediate ε



- Formalize (welfare) deficit and manipulability
- Optimal: lowest deficit
 s.t. manipulability ≤ ε₁.
- Pareto frontier: set of optimal mechanisms

Structural characterization:

#1 Solve LP at finite number of supporting manipulability bounds $\varepsilon_0 < \ldots < \varepsilon_K$


#2 Construct hybrids at intermediate ε

- Formalize (welfare) deficit and manipulability
- Optimal: lowest deficit
 s.t. manipulability ≤ ε₁.
- Pareto frontier: set of optimal mechanisms

Structural characterization:

- #1 Solve LP at finite number of supporting manipulability bounds $\varepsilon_0 < \ldots < \varepsilon_K$
- #2 Construct hybrids at intermediate ε
- \rightarrow Pareto frontier computable

1 Preliminaries

- 2 #1 Optimal Mechanisms
- 3 #2 Hybrid Mechanisms
- Pareto Frontier

Timo Mennle & Sven Seuken - University of Zurich

1 Preliminaries

- ② #1 Optimal Mechanisms
- 3 #2 Hybrid Mechanisms
- Pareto Frontier

Related Work

Domain restrictions:

- Single-peaked preferences (Moulin, 1980)
- Random assignment (Hylland and Zeckhauser, 1979; Abdulkadiroğlu and Sönmez, 1998; Bogomolnaia and Moulin, 2001)

This talk: full & restricted domains

Related Work

Domain restrictions:

- Single-peaked preferences (Moulin, 1980)
- Random assignment (Hylland and Zeckhauser, 1979; Abdulkadiroğlu and Sönmez, 1998; Bogomolnaia and Moulin, 2001)

This talk: full & restricted domains

Relaxing strategyproofness:

- Strategyproofness in the Large (Azevedo and Budish, 2012)
- Approximate strategyproofness (Carroll, 2013)

This talk: ε -approximate strategyproofness

Related Work

Domain restrictions:

- Single-peaked preferences (Moulin, 1980)
- Random assignment (Hylland and Zeckhauser, 1979; Abdulkadiroğlu and Sönmez, 1998; Bogomolnaia and Moulin, 2001)

This talk: full & restricted domains

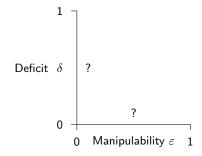
Relaxing strategyproofness:

- Strategyproofness in the Large (Azevedo and Budish, 2012)
- Approximate strategyproofness (Carroll, 2013)

This talk: ε -approximate strategyproofness

Trade-offs:

- Approximation of efficient mechanisms in large markets (Procaccia, 2010; Birrell and Pass, 2011)
- SD-efficiency versus (weak) SD-strategyproofness of random mechanisms (Aziz, Brandl and Brandt, 2014)


This talk: finite setting & exact trade-offs

- Agents $N = \{1, \ldots, n\}$, denoted i
- Alternatives $M = \{1, \ldots, m\}$, denoted a, b, j

- Agents $N = \{1, \ldots, n\}$, denoted i
- Alternatives $M = \{1, \ldots, m\}$, denoted a, b, j
- Preference order P_i over M:
 - $P_i: a \succeq b \Leftrightarrow i$ weakly prefers a to b
 - $P_i : a \sim b \Leftrightarrow P_i : a \succeq b \& P_i : b \succeq a$ (indifference)
 - $P_i : a \succ b \Leftrightarrow P_i : a \succeq b \& P_i : b \nvDash a$ (strict preference)
 - ${\mathcal P}$ space of preference orders

- Agents $N = \{1, \ldots, n\}$, denoted i
- Alternatives $M = \{1, \ldots, m\}$, denoted a, b, j
- Preference order P_i over M:
 - $P_i: a \succeq b \Leftrightarrow i$ weakly prefers a to b
 - $P_i : a \sim b \Leftrightarrow P_i : a \succeq b \& P_i : b \succeq a$ (indifference)
 - $P_i : a \succ b \Leftrightarrow P_i : a \succeq b \& P_i : b \nvDash a$ (strict preference)
 - ${\mathcal P}$ space of preference orders
- Preference profile $\boldsymbol{P} = (P_1, \dots, P_n) = (P_i, P_{-i}) \in \mathcal{P}^n$

- Agents $N = \{1, \ldots, n\}$, denoted i
- Alternatives $M = \{1, \ldots, m\}$, denoted a, b, j
- Preference order P_i over M:
 - $P_i: a \succeq b \Leftrightarrow i$ weakly prefers a to b
 - $P_i : a \sim b \Leftrightarrow P_i : a \succeq b \& P_i : b \succeq a$ (indifference)
 - $P_i : a \succ b \Leftrightarrow P_i : a \succeq b \& P_i : b \nvDash a$ (strict preference)
 - ${\mathcal P}$ space of preference orders
- Preference profile $\boldsymbol{P} = (P_1, \dots, P_n) = (P_i, P_{-i}) \in \mathcal{P}^n$
- Random mechanism $\varphi : \mathcal{P}^n \to \Delta(M)$ $\varphi(\mathbf{P}) = (x_1, \dots, x_m)$, where $\varphi_j(\mathbf{P}) = x_j$ probability for j

• vNM utilities $u_i : M \to [0, 1]$ (i.e., bounded), $u_i(a) \ge u_i(b) \Leftrightarrow P_i : a \succeq b$, denoted $u_i \sim P_i$

- vNM utilities $u_i : M \to [0, 1]$ (i.e., bounded), $u_i(a) \ge u_i(b) \Leftrightarrow P_i : a \succeq b$, denoted $u_i \sim P_i$
- φ strategyproof if for all profiles P ∈ Pⁿ, agents i ∈ N, utilities u_i ~ P_i, misreports P'_i ∈ P:

$$\mathbb{E}_{\varphi(P_i',P_{-i})}\left[u_i\right] - \mathbb{E}_{\varphi(P_i,P_{-i})}\left[u_i\right] \leq 0$$

- vNM utilities $u_i : M \to [0, 1]$ (i.e., bounded), $u_i(a) \ge u_i(b) \Leftrightarrow P_i : a \succeq b$, denoted $u_i \sim P_i$
- φ strategyproof if for all profiles P ∈ Pⁿ, agents i ∈ N, utilities u_i ~ P_i, misreports P'_i ∈ P:

$$\mathbb{E}_{\varphi(P'_i, P_{-i})}\left[u_i\right] - \mathbb{E}_{\varphi(P_i, P_{-i})}\left[u_i\right] \leq 0$$

Idea: limit gain from manipulation

- vNM utilities $u_i : M \to [0, 1]$ (i.e., bounded), $u_i(a) \ge u_i(b) \Leftrightarrow P_i : a \succeq b$, denoted $u_i \sim P_i$
- φ strategyproof if for all profiles P ∈ Pⁿ, agents i ∈ N, utilities u_i ~ P_i, misreports P'_i ∈ P:

$$\mathbb{E}_{\varphi(P_i',P_{-i})}\left[u_i\right] - \mathbb{E}_{\varphi(P_i,P_{-i})}\left[u_i\right] \leq 0$$

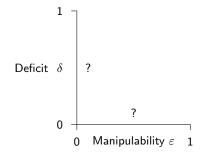
Idea: limit gain from manipulation

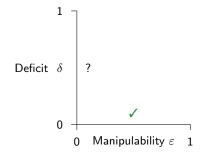
• $\varphi \in \text{-approximately strategyproof } (\varepsilon \text{-}ASP) \text{ if for all profiles}$ $P \in \mathcal{P}^n$, agents $i \in N$, utilities $u_i \sim P_i$, misreports $P'_i \in \mathcal{P}$:

$$\mathbb{E}_{\varphi(P'_{i},P_{-i})}\left[u_{i}\right] - \mathbb{E}_{\varphi(P_{i},P_{-i})}\left[u_{i}\right] \leq \varepsilon$$

- vNM utilities $u_i : M \to [0, 1]$ (i.e., bounded), $u_i(a) \ge u_i(b) \Leftrightarrow P_i : a \succeq b$, denoted $u_i \sim P_i$
- φ strategyproof if for all profiles P ∈ Pⁿ, agents i ∈ N, utilities u_i ~ P_i, misreports P'_i ∈ P:

$$\mathbb{E}_{\varphi(P'_i,P_{-i})}\left[u_i\right] - \mathbb{E}_{\varphi(P_i,P_{-i})}\left[u_i\right] \leq 0$$


Idea: limit gain from manipulation


• $\varphi \in \text{-approximately strategyproof } (\varepsilon \text{-}ASP) \text{ if for all profiles}$ $P \in \mathcal{P}^n$, agents $i \in N$, utilities $u_i \sim P_i$, misreports $P'_i \in \mathcal{P}$:

$$\mathbb{E}_{\varphi(P_i', P_{-i})}\left[u_i\right] - \mathbb{E}_{\varphi(P_i, P_{-i})}\left[u_i\right] \leq \varepsilon$$

• Manipulability of mechanism φ

 $\varepsilon(\varphi) = \min\{\varepsilon' \in [0,1] : \varphi \text{ is } \varepsilon' \text{-approximately strategyproof}\}$

Encoding desiderata

• Welfare function $w : M \times \mathcal{P}^n \rightarrow [0, 1]$, $w(j, \mathbf{P})$ welfare from j at \mathbf{P}

Encoding desiderata

- Welfare function $w: M \times \mathcal{P}^n \to [0,1]$,
 - $w(j, \boldsymbol{P})$ welfare from j at \boldsymbol{P} , e.g.,
 - Positional scoring: $w(j, P) \sim$ score of j at P

Encoding desiderata

- Welfare function $w: M \times \mathcal{P}^n \to [0, 1],$
 - $w(j, \boldsymbol{P})$ welfare from j at \boldsymbol{P} , e.g.,
 - Positional scoring: $w(j, P) \sim$ score of j at P
 - Pareto optimality: $w(j, P) = \mathbb{1}_{\{j \text{ not Pareto dominated at } P\}}$

Encoding desiderata

- Welfare function $w: M \times \mathcal{P}^n \to [0, 1],$
 - $w(j, \boldsymbol{P})$ welfare from j at \boldsymbol{P} , e.g.,
 - Positional scoring: $w(j, \boldsymbol{P}) \sim$ score of j at \boldsymbol{P}
 - Pareto optimality: w(j, P) = 1_{j not Pareto dominated at P}... or doodle:

 $w(j, \mathbf{P}) = \begin{cases} \#\{i : j \text{ good for } i\}/n, & \text{if participation maximal at } j, \\ 0, & \text{else} \end{cases}$

Encoding desiderata

- Welfare function $w: M \times \mathcal{P}^n \to [0, 1],$
 - $w(j, \boldsymbol{P})$ welfare from j at \boldsymbol{P} , e.g.,
 - Positional scoring: $w(j, P) \sim$ score of j at P
 - Pareto optimality: $w(j, P) = \mathbb{1}_{\{j \text{ not Pareto dominated at } P\}}$... or doodle:

 $w(j, \mathbf{P}) = \begin{cases} \#\{i : j \text{ good for } i\}/n, & \text{if participation maximal at } j, \\ 0, & \text{else} \end{cases}$

 Welfare of lottery x: w(x, P) = ∑_{j∈M} w(j, P) · x_j Interpretation: expected score, probability of optimality

Encoding desiderata

- Welfare function $w: M \times \mathcal{P}^n \to [0, 1],$
 - $w(j, \boldsymbol{P})$ welfare from j at \boldsymbol{P} , e.g.,
 - Positional scoring: $w(j, \mathbf{P}) \sim$ score of j at \mathbf{P}
 - Pareto optimality: $w(j, P) = \mathbb{1}_{\{j \text{ not Pareto dominated at } P\}}$... or doodle:

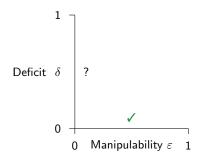
 $w(j, \mathbf{P}) = \begin{cases} \#\{i : j \text{ good for } i\}/n, & \text{if participation maximal at } j, \\ 0, & \text{else} \end{cases}$

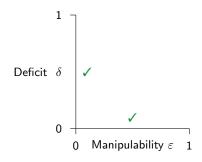
- Welfare of lottery x: w(x, P) = ∑_{j∈M} w(j, P) · x_j Interpretation: expected score, probability of optimality
 Measuring performance
 - Welfare deficit of lottery x at P

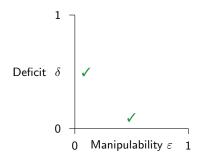
$$\delta(\mathbf{x}, \mathbf{P}) = \max_{j \in M} (w(j, \mathbf{P})) - w(\mathbf{x}, \mathbf{P})$$

Encoding desiderata

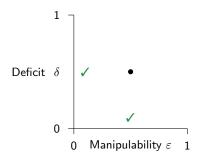
- Welfare function $w: M \times \mathcal{P}^n \to [0, 1]$,
 - $w(j, \boldsymbol{P})$ welfare from j at \boldsymbol{P} , e.g.,
 - Positional scoring: $w(j, \mathbf{P}) \sim$ score of j at \mathbf{P}
 - Pareto optimality: $w(j, P) = \mathbb{1}_{\{j \text{ not Pareto dominated at } P\}}$... or doodle:


 $w(j, \mathbf{P}) = \begin{cases} \#\{i : j \text{ good for } i\}/n, & \text{if participation maximal at } j, \\ 0, & \text{else} \end{cases}$


- Welfare of lottery x: w(x, P) = ∑_{j∈M} w(j, P) · x_j Interpretation: expected score, probability of optimality
 Measuring performance
 - Welfare deficit of lottery x at P


$$\delta(\mathbf{x}, \mathbf{P}) = \max_{j \in M} (w(j, \mathbf{P})) - w(\mathbf{x}, \mathbf{P})$$

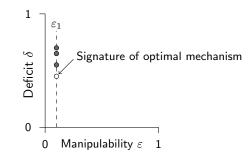
• Welfare deficit of mechanism φ


$$\delta(arphi) = \max_{oldsymbol{P}\in\mathcal{P}^n} \delta(arphi(oldsymbol{P}),oldsymbol{P})$$

• Fix problem (N, M, δ)

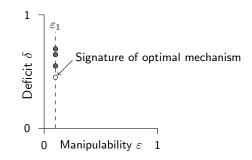
Fix problem (N, M, δ)
 (ε(φ), δ(φ)) ∈ [0, 1] × [0, 1] signature

1 Preliminaries



3 #2 Hybrid Mechanisms

Pareto Frontier


#1 Optimal Mechanisms

Definition (Optimal mechanisms)

$$OPT(\varepsilon) = \{\varphi : \varphi \text{ is } \varepsilon\text{-}ASP, \delta(\varphi) = \min\{\delta(\varphi') : \varphi' \text{ is } \varepsilon\text{-}ASP\}\}$$

#1 Optimal Mechanisms

Definition (Optimal mechanisms)

$$OPT(\varepsilon) = \{\varphi : \varphi \text{ is } \varepsilon\text{-}ASP, \delta(\varphi) = \min\{\delta(\varphi') : \varphi' \text{ is } \varepsilon\text{-}ASP\}\}$$

• Opt(
$$\varepsilon$$
) $\neq \emptyset$

 $\begin{array}{ll} \text{minimize} & \delta(\varphi) & (\text{minimize deficit}) \\ \text{subject to} & \varphi \text{ random mechanism} \\ \varphi & \varepsilon \text{-approx. SP} \end{array}$

 $\begin{array}{ll} \text{minimize} & \delta(\varphi) & (\text{minimize deficit}) \\ \text{subject to} & \varphi \text{ random mechanism} \\ & \varphi \varepsilon \text{-approx. SP} & \leftarrow \text{Uncountable} \end{array}$

 $\begin{array}{ll} \text{minimize} & \delta(\varphi) & (\text{minimize deficit}) \\ \text{subject to} & \varphi \text{ random mechanism} \\ & \varphi \varepsilon \text{-approx. SP} & \leftarrow \text{Uncountable} \end{array}$

Theorem (Finite Equivalent Set of Linear Constraints)

 $\varphi \in \text{-approximately strategyproof if and only if for all profiles}$ $P \in \mathcal{P}^n$, agents $i \in N$, misreports $P'_i \in \mathcal{P}$, indices $k \in \{1, \dots, m\}$:

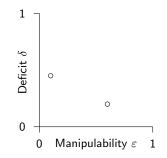
$$\sum_{\substack{\in M: rank_{\succeq_i}(j) \leq k}} \varphi_j(P'_i, P_{-i}) - \varphi_j(P_i, P_{-i}) \leq \varepsilon$$

 $\begin{array}{ll} \text{minimize} & \delta(\varphi) & (\text{minimize deficit}) \\ \text{subject to} & \varphi \text{ random mechanism} \\ \varphi & \varepsilon\text{-approx. SP} & \leftarrow \frac{\text{Uncountable}}{\text{Finite, linear}} \end{array}$

Theorem (Finite Equivalent Set of Linear Constraints)

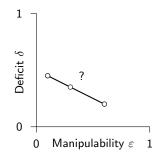
 $\varphi \in \text{-approximately strategyproof if and only if for all profiles}$ $P \in \mathcal{P}^n$, agents $i \in N$, misreports $P'_i \in \mathcal{P}$, indices $k \in \{1, \dots, m\}$:

$$\sum_{\substack{\in M: rank_{\succeq_j}(j) \leq k}} \varphi_j(P'_i, P_{-i}) - \varphi_j(P_i, P_{-i}) \leq \varepsilon$$

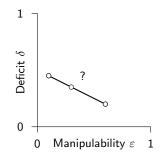

i

Preliminaries

- ② #1 Optimal Mechanisms
- 3 #2 Hybrid Mechanisms
- Pareto Frontier



#2 Hybrid Mechanisms


Idea: "mix" mechanisms for intermediate signatures

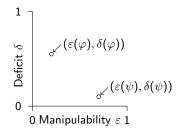
#2 Hybrid Mechanisms

Idea: "mix" mechanisms for intermediate signatures

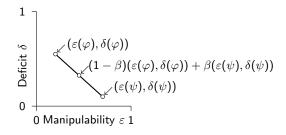
#2 Hybrid Mechanisms


Idea: "mix" mechanisms for intermediate signatures

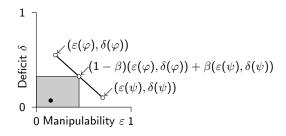
Definition (β -hybrid)


$$h_{eta} = (1 - eta) \varphi + eta \psi, eta \in [0, 1]$$

$$egin{array}{rll} arepsilon(h_eta) &\leq (1-eta)arepsilon(arphi)+etaarepsilon(\psi), \ \delta(h_eta) &\leq (1-eta)\delta(arphi)+eta\delta(\psi) \end{array}$$

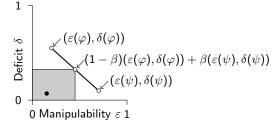

$$egin{array}{rll} arepsilon(h_eta) &\leq (1-eta)arepsilon(arphi)+etaarepsilon(\psi),\ \delta(h_eta) &\leq (1-eta)\delta(arphi)+eta\delta(\psi) \end{array}$$

$$egin{array}{rll} arepsilon(h_eta) &\leq (1-eta)arepsilon(arphi)+etaarepsilon(\psi),\ \delta(h_eta) &\leq (1-eta)\delta(arphi)+eta\delta(\psi) \end{array}$$


$$egin{array}{rll} arepsilon(h_eta) &\leq (1-eta)arepsilon(arphi)+etaarepsilon(\psi),\ \delta(h_eta) &\leq (1-eta)\delta(arphi)+eta\delta(\psi) \end{array}$$

Theorem (Guarantees for Hybrids)

For any mechanisms φ, ψ and $\beta \in [0, 1]$,


$$egin{array}{rll} arepsilon(h_eta) &\leq (1-eta)arepsilon(arphi)+etaarepsilon(\psi),\ \delta(h_eta) &\leq (1-eta)\delta(arphi)+eta\delta(\psi) \end{array}$$

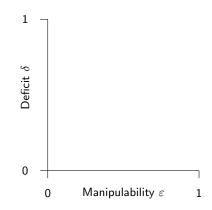
Theorem (Guarantees for Hybrids)

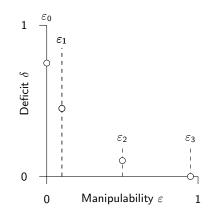
For any mechanisms φ, ψ and $\beta \in [0, 1]$,


$$egin{array}{rll} arepsilon(h_eta) &\leq (1-eta)arepsilon(arphi)+etaarepsilon(\psi),\ \delta(h_eta) &\leq (1-eta)\delta(arphi)+eta\delta(\psi) \end{array}$$

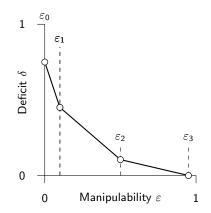
\rightarrow Anonymity and neutrality are "free"

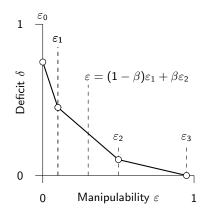
1 Preliminaries

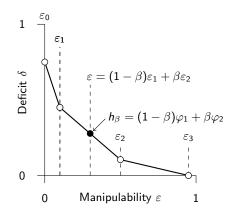

- 2 #1 Optimal Mechanisms
- 3 #2 Hybrid Mechanisms
- Pareto Frontier


Timo Mennle & Sven Seuken - University of Zurich

Result (informal):


• Pareto frontier set of optimal mechanisms


- Pareto frontier set of optimal mechanisms
- $\bullet\,$ Finite set of supporting manipulability bounds $\rightarrow\,$ use LP


- Pareto frontier set of optimal mechanisms
- $\bullet\,$ Finite set of supporting manipulability bounds $\rightarrow\,$ use LP

- Pareto frontier set of optimal mechanisms
- Finite set of supporting manipulability bounds \rightarrow use LP
- $\bullet\,$ Linear for intermediate manipulability bounds $\rightarrow\,$ use hybrids

- Pareto frontier set of optimal mechanisms
- Finite set of supporting manipulability bounds \rightarrow use LP
- $\bullet\,$ Linear for intermediate manipulability bounds $\rightarrow\,$ use hybrids

•
$$\bar{\varepsilon} = \min\{\varepsilon \in [0,1] \mid \delta(\varepsilon) = 0\}$$

- $\bar{\varepsilon} = \min\{\varepsilon \in [0,1] \mid \delta(\varepsilon) = 0\}$
- Pareto frontier PF = U_{ε∈[0,ε]} OPT(ε): no strict reduction of deficit without strict increase of manipulability

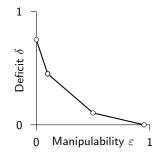
Result (formal):

- $\bar{\varepsilon} = \min\{\varepsilon \in [0,1] \mid \delta(\varepsilon) = 0\}$
- Pareto frontier PF = U_{ε∈[0,ε]} OPT(ε): no strict reduction of deficit without strict increase of manipulability

Theorem (Characterization of PF)

Given a problem (N, M, δ) , there exist finitely many supporting manipulability bounds

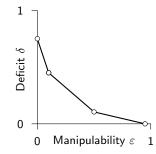
$$0 = \varepsilon_0 < \ldots < \varepsilon_K = \bar{\varepsilon},$$


such that for any $[\varepsilon_{k-1}, \varepsilon_k]$ and $\varepsilon = (1 - \beta)\varepsilon_{k-1} + \beta\varepsilon_k$:

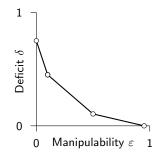
$$DPT(\varepsilon) = (1 - \beta)OPT(\varepsilon_{k-1}) + \beta OPT(\varepsilon_k),$$

$$\delta(\varepsilon) = (1 - \beta)\delta(\varepsilon_{k-1}) + \beta\delta(\varepsilon_k).$$

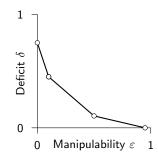
Properties of signature plot $\varepsilon \mapsto \delta(\varepsilon)$


Properties of signature plot $\varepsilon \mapsto \delta(\varepsilon)$

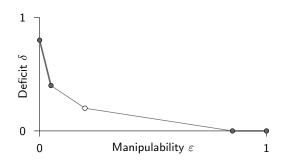
 $\bullet\,$ monotonic & decreasing $\rightarrow\,$ trade-offs


Properties of signature plot $\varepsilon\mapsto\delta(\varepsilon)$

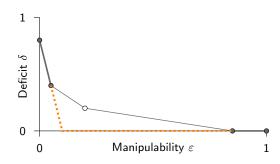
- $\bullet\,$ monotonic & decreasing $\rightarrow\,$ trade-offs
- $\bullet\ {\rm convex} \to {\rm decreasing}\ {\rm marginal}\ {\rm reduction}\ {\rm of}\ {\rm deficit}$

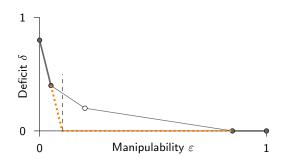

Properties of signature plot $\varepsilon \mapsto \delta(\varepsilon)$

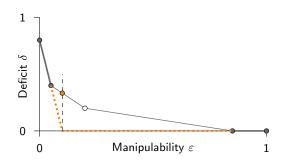
- monotonic & decreasing \rightarrow trade-offs
- $\bullet\ {\rm convex} \to {\rm decreasing}\ {\rm marginal}\ {\rm reduction}\ {\rm of}\ {\rm deficit}$
- ${\ \bullet\ }$ continuous ${\ \rightarrow\ }$ smooth change

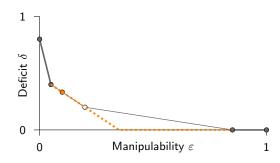


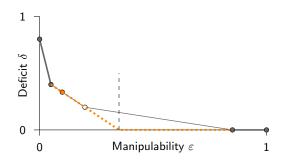
Properties of signature plot $\varepsilon \mapsto \delta(\varepsilon)$

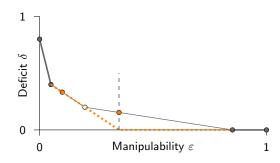

- monotonic & decreasing \rightarrow trade-offs
- $\bullet\ {\rm convex} \to {\rm decreasing}\ {\rm marginal}\ {\rm reduction}\ {\rm of}\ {\rm deficit}$
- ${\ \bullet\ }$ continuous ${\ \rightarrow\ }$ smooth change
- $\bullet\,$ piecewise linear $\to\, \mathrm{PF}$ computable

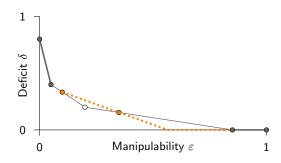

- ullet Interpolate \to potential supporting manipulability bound ε
- Compute $\delta(\varepsilon) \rightarrow \text{verify/discard } \varepsilon$
- Repeat . . .

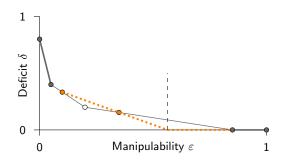

- Interpolate ightarrow potential supporting manipulability bound arepsilon
- Compute $\delta(\varepsilon) \rightarrow \text{verify/discard } \varepsilon$
- Repeat . . .

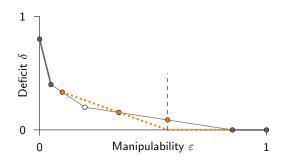

- Interpolate ightarrow potential supporting manipulability bound arepsilon
- Compute $\delta(\varepsilon) \rightarrow \text{verify/discard } \varepsilon$
- Repeat . . .

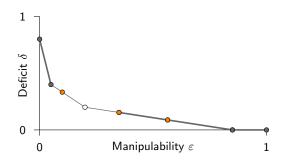

- Interpolate ightarrow potential supporting manipulability bound arepsilon
- Compute $\delta(\varepsilon) \rightarrow \text{verify/discard } \varepsilon$
- Repeat . . .

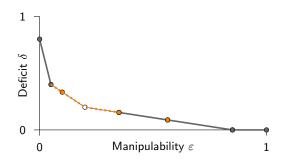

- Interpolate ightarrow potential supporting manipulability bound arepsilon
- Compute $\delta(\varepsilon) \rightarrow \text{verify/discard } \varepsilon$
- Repeat . . .

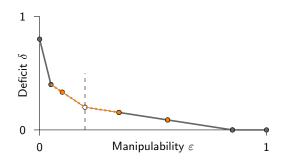

- Interpolate ightarrow potential supporting manipulability bound arepsilon
- Compute $\delta(\varepsilon) \rightarrow \text{verify/discard } \varepsilon$
- Repeat . . .

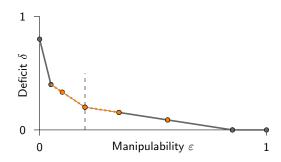

- Interpolate ightarrow potential supporting manipulability bound arepsilon
- Compute $\delta(\varepsilon) \rightarrow \text{verify/discard } \varepsilon$
- Repeat . . .

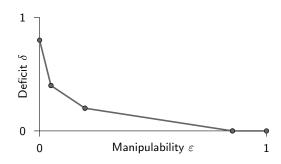

- Interpolate ightarrow potential supporting manipulability bound arepsilon
- Compute $\delta(\varepsilon) \rightarrow \text{verify/discard } \varepsilon$
- Repeat . . .


- Interpolate ightarrow potential supporting manipulability bound arepsilon
- Compute $\delta(\varepsilon) \rightarrow \text{verify/discard } \varepsilon$
- Repeat . . .

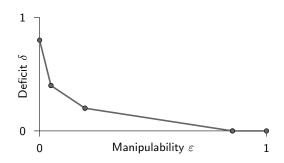

- Interpolate ightarrow potential supporting manipulability bound arepsilon
- Compute $\delta(\varepsilon) \rightarrow \text{verify/discard } \varepsilon$
- Repeat . . .


- Interpolate ightarrow potential supporting manipulability bound arepsilon
- Compute $\delta(\varepsilon) \rightarrow \text{verify/discard } \varepsilon$
- Repeat . . .

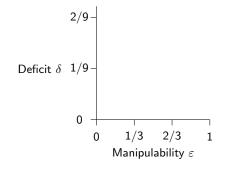

- Interpolate ightarrow potential supporting manipulability bound arepsilon
- Compute $\delta(\varepsilon) \rightarrow \text{verify/discard } \varepsilon$
- Repeat . . .


- Interpolate ightarrow potential supporting manipulability bound arepsilon
- Compute $\delta(\varepsilon) \rightarrow \text{verify/discard } \varepsilon$
- Repeat . . .

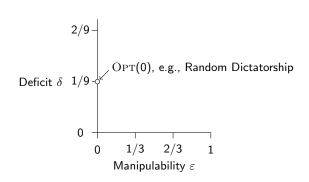
- Interpolate ightarrow potential supporting manipulability bound arepsilon
- Compute $\delta(\varepsilon) \rightarrow \text{verify/discard } \varepsilon$
- Repeat . . .



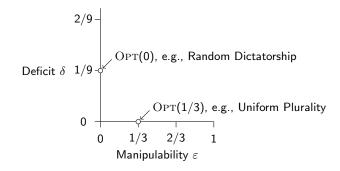
- ullet Interpolate \to potential supporting manipulability bound ε
- Compute $\delta(\varepsilon) \rightarrow \text{verify/discard } \varepsilon$
- Repeat . . .


Algorithm compute $OPT(\varepsilon_k)$ for all $k \in \{0, \dots, K\}$:

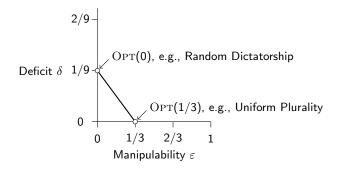
- Interpolate ightarrow potential supporting manipulability bound arepsilon
- Compute $\delta(\varepsilon) \rightarrow \text{verify/discard } \varepsilon$
- Repeat . . .


Runtime: at most $4K + \log_2(1/\varepsilon_1) - 1$ executions of LP

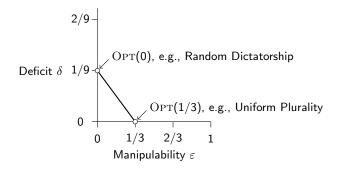
Problem: 3 agents, 3 alternatives, only strict preferences, welfare function: positional scoring v = (1,0,0) (Plurality)


Problem: 3 agents, 3 alternatives, only strict preferences, welfare function: positional scoring v = (1, 0, 0) (Plurality) **Result:**

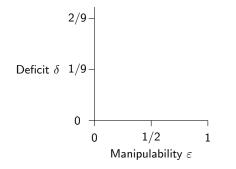
• Random Dictatorship optimal strategyproof mechanism


Problem: 3 agents, 3 alternatives, only strict preferences, welfare function: positional scoring v = (1,0,0) (Plurality) **Result:**

- Random Dictatorship optimal strategyproof mechanism
- Uniform Plurality least manipulable efficient mechanism

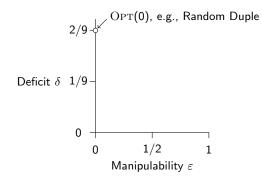

Problem: 3 agents, 3 alternatives, only strict preferences, welfare function: positional scoring v = (1, 0, 0) (Plurality) **Result:**

- Random Dictatorship optimal strategyproof mechanism
- Uniform Plurality least manipulable efficient mechanism
- No other supporting bounds

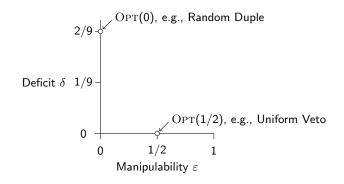


Problem: 3 agents, 3 alternatives, only strict preferences, welfare function: positional scoring v = (1, 0, 0) (Plurality) **Result:**

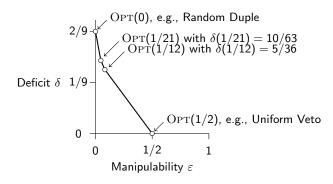
- Random Dictatorship optimal strategyproof mechanism
- Uniform Plurality least manipulable efficient mechanism
- $\bullet~$ No other supporting bounds $\rightarrow~$ hybrids optimal


Problem: 3 agents, 3 alternatives, only strict preferences, welfare function: positional scoring v = (1, 1, 0) (Veto)

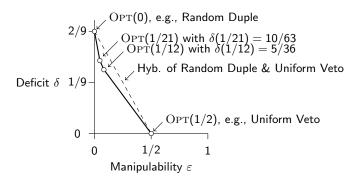
Timo Mennle & Sven Seuken - University of Zurich


Problem: 3 agents, 3 alternatives, only strict preferences, welfare function: positional scoring v = (1, 1, 0) (Veto) Results:

• Random Duple optimal strategyproof mechanism


Problem: 3 agents, 3 alternatives, only strict preferences, welfare function: positional scoring v = (1, 1, 0) (Veto) Results:

- Random Duple optimal strategyproof mechanism
- Uniform Veto least manipulable efficient mechanism


Problem: 3 agents, 3 alternatives, only strict preferences, welfare function: positional scoring v = (1, 1, 0) (Veto) Results:

- Random Duple optimal strategyproof mechanism
- Uniform Veto least manipulable efficient mechanism
- Other supporting bounds $\varepsilon_1 = 1/21, \varepsilon_2 = 1/12$

Problem: 3 agents, 3 alternatives, only strict preferences, welfare function: positional scoring v = (1, 1, 0) (Veto) Results:

- Random Duple optimal strategyproof mechanism
- Uniform Veto least manipulable efficient mechanism
- Other supporting bounds $\varepsilon_1 = 1/21, \varepsilon_2 = 1/12$

1 Preliminaries

- 2 #1 Optimal Mechanisms
- 3 #2 Hybrid Mechanisms
- Pareto Frontier

Timo Mennle & Sven Seuken - University of Zurich

- Ordinal domain restrictions
 - Assumption: full utility
 - Examples: strict preferences, assignment, matching

- Ordinal domain restrictions
 - Assumption: full utility
 - Examples: strict preferences, assignment, matching
- Desiderata and welfare functions:
 - Assumption: linearity of welfare for lotteries

- Ordinal domain restrictions
 - Assumption: full utility
 - Examples: strict preferences, assignment, matching
- Desiderata and welfare functions:
 - Assumption: linearity of welfare for lotteries
 - *Binary* properties, e.g., Pareto optimality, Condorcet consistency, unanimity, *v*-rank efficiency (assignment), stability (matching)

- Ordinal domain restrictions
 - Assumption: full utility
 - Examples: strict preferences, assignment, matching
- Desiderata and welfare functions:
 - Assumption: linearity of welfare for lotteries
 - *Binary* properties, e.g., Pareto optimality, Condorcet consistency, unanimity, *v*-rank efficiency (assignment), stability (matching)
 - *Quantified* properties, e.g., positional scoring, *v*-rank value (assignment), min. number of blocking pairs (matching)

- Ordinal domain restrictions
 - Assumption: full utility
 - Examples: strict preferences, assignment, matching
- Desiderata and welfare functions:
 - Assumption: linearity of welfare for lotteries
 - *Binary* properties, e.g., Pareto optimality, Condorcet consistency, unanimity, *v*-rank efficiency (assignment), stability (matching)
 - *Quantified* properties, e.g., positional scoring, *v*-rank value (assignment), min. number of blocking pairs (matching)
 - Target mechanisms and correspondences

- Ordinal domain restrictions
 - Assumption: full utility
 - Examples: strict preferences, assignment, matching
- Desiderata and welfare functions:
 - Assumption: linearity of welfare for lotteries
 - *Binary* properties, e.g., Pareto optimality, Condorcet consistency, unanimity, *v*-rank efficiency (assignment), stability (matching)
 - *Quantified* properties, e.g., positional scoring, *v*-rank value (assignment), min. number of blocking pairs (matching)
 - Target mechanisms and correspondences
 - Logical combinations: min \rightarrow "and," max \rightarrow "or"

- Ordinal domain restrictions
 - Assumption: full utility
 - Examples: strict preferences, assignment, matching
- Desiderata and welfare functions:
 - Assumption: linearity of welfare for lotteries
 - *Binary* properties, e.g., Pareto optimality, Condorcet consistency, unanimity, *v*-rank efficiency (assignment), stability (matching)
 - *Quantified* properties, e.g., positional scoring, *v*-rank value (assignment), min. number of blocking pairs (matching)
 - Target mechanisms and correspondences
 - Logical combinations: min \rightarrow "and," max \rightarrow "or"
- Deficit notions:
 - Used *absolute* and *worst-case*

- Ordinal domain restrictions
 - Assumption: full utility
 - Examples: strict preferences, assignment, matching
- Desiderata and welfare functions:
 - Assumption: linearity of welfare for lotteries
 - *Binary* properties, e.g., Pareto optimality, Condorcet consistency, unanimity, *v*-rank efficiency (assignment), stability (matching)
 - *Quantified* properties, e.g., positional scoring, *v*-rank value (assignment), min. number of blocking pairs (matching)
 - Target mechanisms and correspondences
 - Logical combinations: min \rightarrow "and," max \rightarrow "or"
- Deficit notions:
 - Used absolute and worst-case
 - Relative (i.e., normalized)
 - Ex-ante (i.e., expectation wrt. prior over preferences)

Problem: trade off manipulability $\varepsilon(\varphi)$ and deficit $\delta(\varphi)$

Problem: trade off *manipulability* $\varepsilon(\varphi)$ and *deficit* $\delta(\varphi)$

Results: characterization of Pareto frontier:

there exist finitely many supporting manipulability bounds

 $0 = \varepsilon_0 < \ldots < \varepsilon_K = \bar{\varepsilon},$

Problem: trade off manipulability $\varepsilon(\varphi)$ and deficit $\delta(\varphi)$

Results: characterization of Pareto frontier: there exist finitely many supporting manipulability bounds

$$0 = \varepsilon_0 < \ldots < \varepsilon_K = \bar{\varepsilon},$$

such that

• At ε_k : optimal mechanisms given by linear program

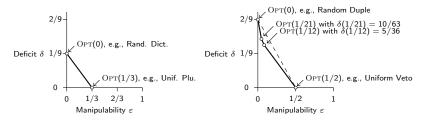
Problem: trade off manipulability $\varepsilon(\varphi)$ and deficit $\delta(\varphi)$

Results: characterization of Pareto frontier: there exist finitely many supporting manipulability bounds

$$0 = \varepsilon_0 < \ldots < \varepsilon_K = \bar{\varepsilon},$$

such that

- At ε_k : optimal mechanisms given by linear program
- At $\varepsilon \in (\varepsilon_{k-1}, \varepsilon_k)$: optimal hybrids of φ_{k-1} and φ_k

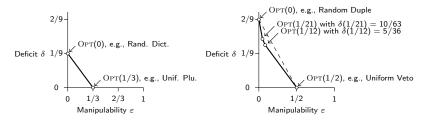

Problem: trade off manipulability $\varepsilon(\varphi)$ and deficit $\delta(\varphi)$

Results: characterization of Pareto frontier: there exist finitely many supporting manipulability bounds

$$0 = \varepsilon_0 < \ldots < \varepsilon_K = \bar{\varepsilon},$$

such that

- At ε_k : optimal mechanisms given by linear program
- At $\varepsilon \in (\varepsilon_{k-1}, \varepsilon_k)$: optimal hybrids of φ_{k-1} and φ_k


Problem: trade off *manipulability* $\varepsilon(\varphi)$ and *deficit* $\delta(\varphi)$

Results: characterization of Pareto frontier: there exist finitely many supporting manipulability bounds

$$0 = \varepsilon_0 < \ldots < \varepsilon_K = \bar{\varepsilon},$$

such that

- At ε_k : optimal mechanisms given by linear program
- At $\varepsilon \in (\varepsilon_{k-1}, \varepsilon_k)$: optimal hybrids of φ_{k-1} and φ_k

Thank you!

- Abdulkadiroğlu, Atila, and Tayfun Sönmez. 1998. "Random Serial Dictatorship and the Core from Random Endowments in House Allocation Problems." *Econometrica*, 66(3): 689–702.
- Azevedo, Eduardo M., and Eric Budish. 2012. "Strategyproofness in the Large as a Desideratum for Market Design." Extended Abstract.
- Aziz, Haris, Florian Brandl, and Felix Brandt. 2014. "On the Incompatibility of Efficiency and Strategyproofness in Randomized Social Choice." 67–72.
- Birrell, Eleanor, and Rafael Pass. 2011. "Approximately Strategy-Proof Voting." 67-72.
- Bogomolnaia, Anna, and Hervé Moulin. 2001. "A New Solution to the Random Assignment Problem." Journal of Economic Theory, 100(2): 295–328.
- Carroll, Garbiel. 2013. "A Quantitative Approach to Incentives: Application to Voting Rules." Working Paper.
- Gibbard, Allan. 1973. "Manipulation of Voting Schemes: a General Result." Econometrica, 41(4): 587-601.
- Gibbard, Allan. 1977. "Manipulation of Schemes That Mix Voting with Chance." Econometrica, 45(3): 665-81.
- Hylland, Aanund, and Richard Zeckhauser. 1979. "The Efficient Allocation of Individuals to Positions." The Journal of Political Economy, 87(2): 293–314.
- Moulin, Hervé. 1980. "On Strategy-Proofness and Single Peakedness." Public Choice, 35(4): 437-455.
- Procaccia, Ariel. 2010. "Can Approximation Circumvent Gibbard-Satterthwaite?" 836-841.
- Satterthwaite, Mark. 1975. "Strategy-proofness and Arrow's Conditions: Existence and Correspondence Theorems for Voting Procedures and Social Welfare Functions." Journal of Economic Theory, 10(2): 187–217.