# Justified Representation in Approval-Based Committee Voting 

螦UNSW
Hariz Aziz
Edith Elkind

Duke
Markus Brill Vincent Conitzer
Rupert Freeman Toby Walsh
Duke


## Voting with Approval Ballots

- A set of candidates $C$
- $n$ voters $\{1, . . ., n\}$

- Each voter i approves a subset of candidates $A_{i} \subseteq C$

$$
\begin{aligned}
& 1: c_{1}, c_{2} \\
& 2: c_{2} \\
& 3: c_{2} \\
& 4: c_{1}
\end{aligned}
$$

- Goal: select $k$ winners (a committee) $5: c_{3}$


## Outline

- Approval-based multiwinner rules
- Justified Representation (JR)
- Which rules satisfy JR?
- Extended Justified Representation (EJR)
- (E)JR and core stability


## Outline

- Approval-based multiwinner rules
- Justified Representation (JR)
- Which rules satisfy JR?
- Extended Justified Representation (EJR)
- (E)JR and core stability


## Approval Voting (AV)

- Each candidate gets one point from each voter who approves her
- k candidates with the highest score are selected
- ties broken deterministically


$$
\begin{gathered}
\text { for } k=3 \\
\text { AV outputs } \\
\left\{c_{1}, c_{2}, c_{3}\right\}
\end{gathered}
$$

## Minimax Approval Voting (MAV)

- Brams, Kilgour \& Sanver '07

- Distance from ballot $\mathrm{A}_{\mathrm{i}}$ to a committee $W$ :
$d\left(A_{i}, W\right)=\left|A_{i} \backslash W\right|+\left|W \backslash A_{i}\right|$
- Goal: select a size-k
 committee that minimizes $\max _{i} \mathrm{~d}\left(\mathrm{~A}_{\mathrm{i}}, \mathrm{W}\right)$


## Satisfaction Approval Voting (SAV)

- Brams \& Kilgour '14
- Voter i scores committee W
 as $\left|A_{i} \cap W\right| /\left|A_{i}\right|$
- Goal: select a size-k committee with the maximum score


## Proportional Approval Voting (PAV)

- Simmons'01
- Voter i derives utility of 1 from her $1^{\text {st }}$ approved candidate,
$1 / 2$ from $2^{\text {nd }}$, $1 / 3$ from $3^{\text {rd }}$, etc.
- $u_{i}(W)=1+1 / 2+\ldots+1 /\left|W \cap A_{i}\right| \quad$ for $k=2$
- Goal: select a size-k committee $W$ that maximizes $u(W)=\sum_{i} u_{i}(W)$


AV outputs $\left\{\mathrm{C}_{1}, \mathrm{C}_{2}\right\}$, PAV outputs
$\left\{c_{1}, c_{3}\right\}$ or $\left\{c_{2}, c_{3}\right\}$

## Reweighted Approval Voting (RAV)

- Thiele, early $20^{\text {th }}$ century
- Sequential version of PAV
- Initialize:

$$
\omega(i)=1 \text { for all i, W = } \varnothing
$$

- Repeat ktimes:
- add to W a candidate with max approval weight


$$
\omega(\mathrm{c})=\Sigma_{\text {iapproves } \mathrm{c}} \omega(\mathrm{i})
$$

- update the weight
of each voter to $\omega(i)=1 /\left(1+\left|A_{i} \cap W\right|\right)$


## Generalizing PAV and RAV: Arbitrary Weights

- PAV and RAV both use weight vector (1, 1/2, 1/3, ...)
- We can use an arbitrary weight vector $\left(w_{1}, w_{2}, \ldots\right)$ with $w_{1}=1, w_{1} \geq w_{2} \geq \ldots$ instead: $\left(w_{1}, w_{2}, \ldots\right)$-PAV and ( $\left.w_{1}, w_{2}, \ldots\right)$-RAV
- ( $1,0, \ldots$ )-RAV: choose candidates one by one to cover as many uncovered voters as possible at each step (Greedy Approval Voting (GAV))


## Outline

- Approval-based multiwinner rules
- Justified Representation (JR)
- Which rules satisfy JR?
- Extended Justified Representation (EJR)
- (E)JR and core stability


## Representation

- 5 voters get 3 representatives, 4 voters get 0 representatives
- Intuition: each cohesive group of voters of size $n / k$ "deserves" at least one representative


$$
\begin{gathered}
\text { for } k=3 \\
\text { AV outputs } \\
\left\{c_{1}, c_{2}, c_{3}\right\}
\end{gathered}
$$

## First Attempt:

## Strong Justified Representation

- Definition: a committee W provides strong justified representation (SJR) for a list of ballots $\left(A_{1}, \ldots, A_{n}\right)$ and committee size $k$ if for every set of voters $X$ with $|X| \geq n / k$ and $\cap_{i \in x} A_{i} \neq \varnothing$ it holds that $W$ contains at least one candidate from $\cap_{i \in x} A_{i}$.
- Bad news: for some profiles, no committee provides SJR



## Justified Representation

- Definition: a committee $W$ provides justified representation (JR) for a list of ballots $\left(A_{1}, \ldots, A_{n}\right)$ and committee size $k$ if for every set of voters $X$ with $|X| \geq n / k$ and $\cap_{i \in X} A_{i} \neq \varnothing$ it holds that W contains at least one candidate from $U_{i \in X} A_{i}$.
- Equivalently: there does not exist a
 cohesive group of $\mathrm{n} / \mathrm{k}$ voters that is totally unrepresented


## Can We Always Satisfy JR?

- Claim: GAV (aka (1, 0, ...)-RAV) always outputs a committee that provides JR.
- Proof:
- Suppose after k steps we have n/k uncovered voters who all approve a
- a's weight is $\geq \mathrm{n} / \mathrm{k}$
- then at each step we chose a candidate
 that covered $\geq \mathrm{n} / \mathrm{k}$ uncovered voters
- thus we should have covered all n voters


## Outline

- Approval-based multiwinner rules
- Justified Representation (JR)
- Which rules satisfy JR?
- Extended Justified Representation (EJR)
- (E)JR and core stability


## Rules that fail JR

- AV fails JR for $k \geq 3$
- SAV fails JR for $k \geq 2$
- MAV fails JR for $k \geq 2$
- except if each ballot is of size $k$ and ties are broken in favour of JR

for $k=3$
AV outputs $\left\{\mathrm{c}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}\right\}$


## SAV Fails JR

- SAV:
- voter i scores committee W
as $\left|A_{i} \cap W\right| /\left|A_{i}\right|$
- SAV select a size-k committee with the maximum score


$$
\mathrm{k}=\mathrm{n}=2
$$

SAV outputs

$$
\left\{c_{4}, c_{5}\right\}
$$

- SAV fails JR


## PAV, RAV and JR

- Theorem: PAV satisfies JR $-\left(w_{1}, w_{2}, \ldots\right)$-PAV satisfies JR iff $w_{j} \leq 1 / j$ for all $j$
- Theorem: RAV fails JR for $k \geq 10$
$-k=3, \ldots, 9$ is open!
$-\left(w_{1}, w_{2}, \ldots\right)$-RAV fails JR if $w_{2}>0$
$-(1,0, \ldots)-R A V$ is GAV and satisfies JR
- (1, 1/n, ...)-RAV satisfies JR


## PAV Satisfies JR

- $u_{i}(W)=1+1 / 2+\ldots+1 /\left|W \cap A_{i}\right|$
- Goal: select a size-k committee $W$ that maximizes $u(W)=\sum_{i} u_{i}(W)$
- Theorem: PAV satisfies JR
- Proof idea:
- if not, there is some $c \in C$ that could increase the total utility by $\geq n / k$
- we will show that some candidate $a \in W$ contributes < n/k


## PAV Satisfies JR

- Proof:
$-M C(a):=u(W)-u(W \backslash a):$ marginal utility of a
$-M C(a, i):=u_{i}(W)-u_{i}(W \backslash a)$ : marginal utility of a for $i$
$-\Sigma_{\mathrm{a}} \mathrm{MC}(\mathrm{a})=$
$-M C(a)<n / k$ for some $a$ in $W$
$-u(W \cup c \backslash a)>u(W)$
$M C(a, 1)=1 / 4$
$M C(a, 2)=1 / 3 \quad M C(a)=1 / 4+1 / 3+1 / 5$
$M C(a, 3)=1 / 5$



## Summary: JR

|  | Satisfies JR |  |
| :---: | :---: | :--- |
| AV | No |  |
| SAV | No |  |
| MAV | No |  |
| PAV | Yes |  |
| RAV | No |  |
| GAV | Yes |  |

## Outline

- Approval-based multiwinner rules
- Justified Representation (JR)
- Which rules satisfy JR?
- Extended Justified Representation (EJR)
- (E)JR and core stability


## Is JR Enough?

- Should we choose $\mathrm{C}_{4}$ ???
- Perhaps a very large cohesive group of voters "deserves" several representatives?
- Idea: if $n / k$ voters who agree on a candidate "deserve"
 one representative, then maybe $\ell \cdot \mathrm{n} / \mathrm{k}$ voters who agree on $\ell$ candidates "deserve" $\ell$ representatives?


## Extended Justified Representation

- Definition: a committee W provides extended justified representation (EJR) for a list of ballots $\left(A_{1}, \ldots, A_{n}\right)$ and committee size $k$ if for every $l>0$, every set of voters $X$ with $|X| \geq \ell \cdot n / k$ and $\left|\cap_{i \in x} A_{i}\right| \geq \ell$ it holds that $\left|W \cap A_{i}\right| \geq \ell$ for at least one $i \in X$.
- $\ell=1$ : justified representation


## Satisfying EJR

- Observation: GAV fails EJR
- Theorem: PAV satisfies EJR
$-\left(w_{1}, w_{2}, \ldots\right)$-PAV fails EJR if $\left(w_{1}, w_{2}, \ldots\right) \neq(1,1 / 2,1 / 3, \ldots)$
- But PAV is NP-hard to compute [AGGMMW '14]
- Are there any other rules satisfying EJR?
- Theorem: checking if a committee provides EJR is coNP-complete
- Open: complexity of finding an EJR committee


## Outline

- Approval-based multiwinner rules
- Justified Representation (JR)
- Which rules satisfy JR?
- Extended Justified Representation (EJR)
- (E)JR and core stability


## A Cooperative Game

- Given $k$ and $\left(A_{1}, \ldots, A_{n}\right)$, consider NTU game with players $\{1, \ldots, n\}$
- each coalition of size $x$ with $\ell \cdot n / k \leq x \leq(\ell+1) \cdot n / k$ can "purchase" $\ell$ alternatives
- players evaluate committees using PAV utility function
- a coalition has a profitable deviation if they can purchase a set of candidates that is strictly preferred by everybody in the coalition
- core: outcomes w/o profitable deviations


## (E)JR and Core Stability

- Theorem: Committee provides JR iff no coalition of size $\leq\lceil n / k\rceil$ has a profitable deviation.
- Theorem: Committee provides EJR iff for every $\ell \geq 0$, no coalition $X$ with $\ell \cdot n / k \leq|X| \leq(\ell+1) \cdot n / k$ and $\left|\cap_{i \in x} A_{i}\right| \geq \ell$ has a profitable deviation. - not true for arbitrary coalitional deviations!
- Open problems:
- Is the core always non-empty?
- Find a rule that selects from the core (if non-empty)


## Conclusion

- New properties for approval-based committee voting rules
- capture representation
- EJR characterizes PAV weight vector ( $1,1 / 2, \ldots$ )
- Open problems:
- tractable rules satisfying EJR
- core-selecting rules

|  | JR | EJR |
| :---: | :---: | :---: |
| AV | No | No |
| SAV | No | No |
| MAV | No | No |
| PAV | Yes | Yes |
| RAV | No | No |
| GAV | Yes | No |

- restricted domains

