Justified Representation in Approval-Based Committee Voting

Hariz AzizMarkus BrillVincent ConitzerEdith ElkindRupert FreemanToby Walsh

Voting with Approval Ballots

- A set of candidates C
- n voters {1, ... , n}
- Each voter i approves
 a subset of candidates A_i ⊆ C

1: **c**₁, **c**₂

2: C₂

3: C_2

4: C₁

<u>Goal</u>: select k winners (a committee) 5: c₃

- Approval-based multiwinner rules
- Justified Representation (JR)
- Which rules satisfy JR?
- Extended Justified Representation (EJR)
- (E)JR and core stability

- Approval-based multiwinner rules
- Justified Representation (JR)
- Which rules satisfy JR?
- Extended Justified Representation (EJR)
- (E)JR and core stability

Approval Voting (AV)

- Each candidate gets one point from each voter who approves her
- k candidates with the highest score are selected
 - ties broken deterministically

for k=3 AV outputs {c₁,c₂, c₃}

Minimax Approval Voting (MAV)

• Brams, Kilgour & Sanver '07

Distance from ballot A_i

- $c_1 \circ c_2 \circ c_3$
- to a committee W: $d(A_i, W) = |A_i \setminus W| + |W \setminus A_i|$
- for k=1 AV outputs c₁, MAV outputs c₂ or c₃

 <u>Goal</u>: select a size-k committee that minimizes max_i d(A_i, W)

Satisfaction Approval Voting (SAV)

- Brams & Kilgour '14
- Voter i scores committee W as |A_i ∩ W|/|A_i|
- <u>Goal</u>: select a size-k committee with the maximum score

for k=2 AV outputs {c₁, c₂}, SAV outputs {c₃, c₄}

Proportional Approval Voting (PAV)

- Simmons '01
- Voter i derives utility of 1 from her 1st approved candidate, 1/2 from 2nd,
 - 1/3 from 3rd, etc.
- $u_i(W) = 1 + 1/2 + ... + 1/|W \cap A_i|$
- <u>Goal</u>: select a size-k committee W that maximizes $u(W) = \sum_{i} u_{i}(W)$

for k=2 AV outputs $\{c_1, c_2\},$ PAV outputs $\{c_1, c_3\}$ or $\{c_2, c_3\}$

Reweighted Approval Voting (RAV)

- Thiele, early 20th century
- Sequential version of PAV
- Initialize: $\omega(i) = 1$ for all i, W = \emptyset
- Repeat k times:

- add to W a candidate with max approval weight $\omega(c) = \sum_{i \text{ approves } c} \omega(i)$

-update the weight of each voter to $\omega(i) = 1/(1+|A_i \cap W|)$

for k=2 PAV outputs $\{c_2, c_3\}$, RAV outputs $\{c_1, c_2\}$ or $\{c_1, c_3\}$

Generalizing PAV and RAV: Arbitrary Weights

- PAV and RAV both use weight vector (1, 1/2, 1/3, ...)
- We can use an arbitrary weight vector

 (w₁, w₂,...) with w₁ = 1, w₁ ≥ w₂ ≥ ... instead:
 (w₁, w₂, ...)-PAV and (w₁, w₂, ...)-RAV
- (1, 0, ...)-RAV: choose candidates one by one to cover as many uncovered voters as possible at each step (Greedy Approval Voting (GAV))

- Approval-based multiwinner rules
- Justified Representation (JR)
- Which rules satisfy JR?
- Extended Justified Representation (EJR)
- (E)JR and core stability

Representation

5 voters get 3 representatives,
4 voters get 0 representatives

 Intuition: each cohesive group of voters of size n/k "deserves" at least one representative

for k=3 AV outputs {c₁, c₂, c₃}

First Attempt: Strong Justified Representation

- Definition: a committee W provides strong justified representation (SJR) for a list of ballots (A₁,..., A_n) and committee size k if for every set of voters X with |X| ≥ n/k and ∩_{i∈X} A_i ≠ Ø it holds that W contains at least one candidate from ∩_{i∈X} A_i.
- Bad news: for some profiles, no committee provides SJR

Justified Representation

- <u>Definition</u>: a committee W provides justified representation (JR) for a list of ballots $(A_1,..., A_n)$ and committee size k if for every set of voters X with $|X| \ge n/k$ and $\bigcap_{i \in X} A_i \ne \emptyset$ it holds that W contains at least one candidate from $U_{i \in X} A_i$.

Equivalently: there does not exist a cohesive group of n/k voters that is totally unrepresented

Can We Always Satisfy JR?

- <u>Claim</u>: GAV (aka (1, 0, ...)-RAV) always outputs a committee that provides JR.
- Proof:
 - Suppose after k steps we have n/k uncovered voters who all approve a
 - a's weight is $\geq n/k$
 - then at each step we chose a candidate that covered ≥ n/k uncovered voters
 - thus we should have covered all n voters

- Approval-based multiwinner rules
- Justified Representation (JR)
- Which rules satisfy JR?
- Extended Justified Representation (EJR)
- (E)JR and core stability

Rules that fail JR

• AV fails JR for $k \ge 3$

• SAV fails JR for $k \ge 2$

• MAV fails JR for $k \ge 2$

 except if each ballot is of size k and ties are broken in favour of JR

for k=3 AV outputs {c₁,c₂, c₃}

SAV Fails JR

- SAV:
 - voter i scores
 committee W
 as |A_i ∩ W|/|A_i|
 - SAV select a size-k committee with the maximum score

k=n=2

SAV outputs $\{c_4, c_5\}$

• SAV fails JR

PAV, RAV and JR

• <u>Theorem</u>: PAV satisfies JR

- ($w_1, w_2, ...$)-PAV satisfies JR iff $w_j \le 1/j$ for all j

- <u>Theorem</u>: RAV fails JR for $k \ge 10$
 - **– k = 3**, ..., **9** is open!
 - $-(w_1, w_2, ...)$ -RAV fails JR if $w_2 > 0$
 - (1, 0, ...)-RAV is GAV and satisfies JR
 - (1, 1/n, ...)-RAV satisfies JR

PAV Satisfies JR

- $u_i(W) = 1 + 1/2 + ... + 1/|W \cap A_i|$
- <u>Goal</u>: select a size-k committee W that maximizes $u(W) = \sum_{i} u_{i}(W)$
- <u>Theorem</u>: PAV satisfies JR
- <u>Proof idea</u>:
 - if not, there is some $c \in C$ that could increase the total utility by $\geq n/k$
 - we will show that some candidate a ∈ W
 contributes < n/k

PAV Satisfies JR

- <u>Proof</u>:
 - $-MC(a) := u(W) u(W \setminus a)$: marginal utility of a
 - $-MC(a, i) := u_i(W) u_i(W \setminus a)$: marginal utility of a for i
 - $-\Sigma_{a}MC(a) =$

Summary: JR

	Satisfies JR	
AV	No	
SAV	No	
MAV	No	
PAV	Yes	
RAV	No	
GAV	Yes	

- Approval-based multiwinner rules
- Justified Representation (JR)
- Which rules satisfy JR?
- Extended Justified Representation (EJR)
- (E)JR and core stability

Is JR Enough?

- Should we choose c₄ ???
- Perhaps a very large cohesive group of voters "deserves" several representatives?
- Idea: if n/k voters who agree on a candidate "deserve"
 one representative, then maybe ℓ • n/k voters who agree on ℓ candidates "deserve" ℓ representatives?

Extended Justified Representation

• <u>Definition</u>: a committee W provides extended justified representation (EJR) for a list of ballots $(A_1, ..., A_n)$ and committee size k if for every $\ell > 0$, every set of voters X with $|X| \ge \ell$ • n/k and $|\bigcap_{i \in X} A_i| \ge \ell$ it holds that $|W \cap A_i| \ge \ell$ for at least one $i \in X$.

l = 1: justified representation

Satisfying EJR

- <u>Observation</u>: GAV fails EJR
- <u>Theorem</u>: PAV satisfies EJR
 (w₁, w₂, ...)-PAV fails EJR if (w₁, w₂, ...) ≠ (1, 1/2, 1/3, ...)
- But PAV is NP-hard to compute [AGGMMW'14]

– Are there any other rules satisfying EJR?

- <u>Theorem</u>: checking if a committee provides EJR is coNP-complete
- <u>Open</u>: complexity of finding an EJR committee

- Approval-based multiwinner rules
- Justified Representation (JR)
- Which rules satisfy JR?
- Extended Justified Representation (EJR)
- (E)JR and core stability

A Cooperative Game

- Given k and (A₁, ..., A_n), consider NTU game with players {1, ..., n}
 - each coalition of size x with $\ell \cdot n/k \le x \le (\ell+1) \cdot n/k$ can "purchase" ℓ alternatives
 - players evaluate committees using PAV utility function
 - a coalition has a profitable deviation if they can purchase a set of candidates that is strictly preferred by everybody in the coalition
 - core: outcomes w/o profitable deviations

(E)JR and Core Stability

- <u>Theorem</u>: Committee provides JR iff no coalition of size ≤ [n/k] has a profitable deviation.
- <u>Theorem</u>: Committee provides EJR iff for every $\ell \ge 0$, no coalition X with $\ell \cdot n/k \le |X| \le (\ell+1) \cdot n/k$ and $|\bigcap_{i \in X} A_i| \ge \ell$ has a profitable deviation.

not true for arbitrary coalitional deviations!

- Open problems:
 - Is the core always non-empty?
 - Find a rule that selects from the core (if non-empty)

Conclusion

 New properties for approval-based committee voting rules

Thank you!

- capture representation
- EJR characterizes PAV
 weight vector (1, ½, ...)
- Open problems:
 - tractable rules satisfying EJR
 - core-selecting rules
 - restricted domains

	JR	EJR
AV	No	No
SAV	No	No
MAV	No	No
PAV	Yes	Yes
RAV	No	No
GAV	Yes	No