
Optimal targeting strategy in a network under positive
externalities

Gabrielle Demange
Paris School of Economics

COST-Comsoc Istanbul November 2015

Gabrielle Demange Paris School of Economics (PSE-EHESS)Optimal targeting no 1 / 23



A planner (e.g. firm, government, health authority) aims to enhance
agents’ activity

Social network under positive externalities

Tool: targeting of nodes/agents by allocating a fixed amount of
’resources’

Examples: viral marketing, control of contagion, criminal activity ...
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Questions and objectives

How is the planner’s amount optimally allocated? Is it concentrated
on few agents or dispersed among numerous ones?

What is the value of information on the interaction structure?

So far mostly two models: linear models of interactions or 0-1 model.

Here: Individual’s action is a continuous variable
Tractable non linear model to study equilibria (steady states) and
planner’s impact
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Some insights

Planner’s strategy relies on

individuals’ impact totals (out-degrees) and Centrality Katz-Bonacich
indices under linear interaction
other network’s characteristic in interaction with diminishing returns,
’attention’ and not only impact matters, structure of joint impact
stronger properties when impact totals are equal

The value of information is almost always positive, and is linked to
the heterogeneity in the network
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Examples

linear response

strategic games with quadratic payoffs → a linear ’best’ reply
Ballester, Calvo Armengol, Zenou [2006]
action= criminal activity, effort ...
objective: suppress the ’key player’, i.e. a node

pricing model with discrimination of the nodes (Bloch and
Querou [2013], Candogan, Bimpikis, Ozdaglar [2012]) Fainmesser and
Galeotti [2013])
action= probability of purchase or adoption
profit objective
financial network : Demange [2015]
action= proportion of debt repayments (lower and upper bound)
objective: inject cash into banks to maximize overall repayments
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Binary variables/Threshold models

adoption/contagion process: 0-1 model
threshold models or SIR model
Schelling [1969], Morris [2003], Domingos and Richardson [2001] in a
marketing context, Dodds and Watts [2004] in biology

planner’s strategy: choose a subset to initiate the maximal diffusion

statistical insights

computational issues in 0-1 threshold models: Kempe, Kleinberg and
Tardos [2003]
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Equilibrium in an interaction model

Impact and exposures

n agents, take actions, θi ≥ 0 for agent i , θ = (θi )

Bilateral Impacts:
πij ≥ 0 = impact of i on j or j ’s attention to i πii = 0
example: network with πij equal to 0 or 1

Exposures :
Given θ = (θi ), τj(θ) =

∑
i πijθi is the (total) exposure of j .

Reaction to exposures : determined by a response function f
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Equilibrium in an interaction model

Reaction

Reaction to exposure:

θi = zi + f (
∑
j

πjiθj) if ≥ 0

= 0 otherwise

f continuous from R+ to R+, f (0) = 0.

An equilibrium: θ = (θi ) for which each θi is the reaction to i ’s exposure.

zi = xi + y
xi : planner’s allocation to i (to be determined)
y : i ’s action level in isolation
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Equilibrium in an interaction model

Equilibrium under strategic complements

Assume f is increasing: actions are strategic complements.

Equilibria are ’well behaved’ and easy to find (iterate reactions)
Topkis [1979]
ρ(π)= dominant eigenvalue of π.

Assumption L(ipshitz): f ′(τ)ρ(π) < 1 for all τ

Under assumption L, an equilibrium exists and is unique.

Can be relaxed, but not uniqueness
I consider decreasing, constant, or increasing returns to exposure : f
concave, linear or convex
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Equilibrium in an interaction model

The planner’s objective

’Planner’ aims at improving aggregate activity :
∑

i θi
Endowed with amount m ≥ 0 to distribute.

a targeting strategy n-vector x = (xi ), xi changes y into zi = y + xi ,
hence changes equilibrium actions

Ex: xi : discount or charge
xi cash, time spent ’positive’ case: each xi must be ≥ 0

budget constraint:
– positive setting: x = (xi ),

∑
i xi = m

– unconstrained setting: extracted amount is limited by y + f (τi )
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Equilibrium in an interaction model

Optimal strategies

x is optimal if it maximizes equilibrium aggregate activity
∑

i θi over all
feasible strategies.

The planner accounts for the full impact of externalities
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Constant returns to exposure

Linear model: f (τ) = δτ

Unconstrained setting. Let πmax
+ = maxjπi+

If δπmax
+ ≥ 1, then aggregate action can be made infinitely large.

If δπmax
+ < 1, then an optimal strategy exists, targets the nodes with

maximal impact total and ’exploits’ others, i;e. leave them with null action.

Positive setting. Let µ = (I− δπ)−111 ’multipliers’

Optimal positive strategies: the feasible ones that target individuals with
maximum multiplier µmax = maxjµj .
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Constant returns to exposure Centrality Katz-Bonacich indices

Linear model: Implications Positive strategies

Multiplier : centrality index in the impact network (Katz [1953]
Bonacich [1987]) :

µ = (I − δπ)−111 = 11 + δπ11 + δ2π211 · · ·+ · · ·

µi = number of discounted paths from i in the impact network.

Actions and multipliers are ’dual’ to each other

Actions= linear in the centrality index in the attention network

In a non symmetric network
Targets are not necessarily the individuals with the largest action
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Constant returns to exposure Centrality Katz-Bonacich indices

Linear model: Value of information.

Benchmark: A uniform (or a random) strategy allocates equal amount to
each x = m

n 11,

Benefit from the optimal strategy over the uniform one:

[
1

(1− δπmax
+ )

− (
1

n

∑
i

µi )]m unconstrained case

[µmax − (
1

n

∑
i

µi )]m positive case

Value reflects the heterogeneity in the impact matrix.
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Constant returns to exposure Centrality Katz-Bonacich indices

Equal impact

Null information values only when impact totals are equal :∑
j

πij identical across i

ex: i delivers a speech to each of his followers separately;
πij =the proportion of time devoted by i to each
θi = the overall time i allocates to the action.
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Diminishing returns to exposure

Diminishing returns to exposure

no explicit solution for the equilibria and strategies

one can exploit the geometry of equilibria due to complementarity:
the set of actions θ ≥ 0 that satisfy

θi ≤ zi + f (
∑
j

πjiθj) for each i

has a greatest element, which is the equilibrium associated to z ,

put the planner’s problem as a concave program.

optimal strategies are characterized by ’multipliers’ in the positive case

Here: consider the unconstrained quadratic case.
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Diminishing returns to exposure Joint impact

Quadratic unconstrained case

f (τ) = δτ − γ

2
τ2 for τ ≤ δ

γ
constant thereafter

Define i , j-joint impact by σij =
∑

k πikπjk . σ = ππ̃.

congruence in i and j impact
In a network: σij = number of nodes impacted by both i and j

Given θ, call
∑

j σijθj i ’s weighted joint impact at θ

To simplify: m small, π invertible
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Diminishing returns to exposure Joint impact

At the optimal strategy:

δπi+ − γ
∑
j∈I

σijθj is maximum for i with positive action

Strategy adjusted to actions xi = θi − f (τi ).
Extract the maximum from those with null actions

Strategy trades-off between
1 targeting the agents whose impact is maximal and
2 targeting those who have a small joint impact, i.e. who have an impact

on agents difficult to influence, with little attention
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Diminishing returns to exposure Joint impact

Quadratic response function-equal impact

No trade-off in the case of equal impact.

actions are proportional to the unit vector θ̂ that
minimize θ̃σθ, i.e. the variation in exposure levels

∑
i τ

2
i

Full support only if exposure levels can be equalized, π̃θ̂ = 11
Equivalent to : no subset of nodes is ’attention-dominated’

Extends to any f : If exposure levels can be equalized, π̃θ̂ = 11 always
optimal to induce them
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Diminishing returns to exposure Joint impact

General f

Take second-order approximation of f

Simulate networks according to Erdos Renyi and adjust the rows
The support of θ̂ is almost never N: positive value of information.

6= in the linear case, where every strategy is optimal
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Diminishing returns to exposure General case: some results.

The optimal strategies and actions are positive whatever concave f
and resources m iff both impact and attention totals are equal. In
that case the uniform strategy is optimal.

The targeting strategy is not necessarily monotone in m. Root of
difficulties in computing targeting strategies
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Diminishing returns to exposure General case: some results.

Large resources

For large m, the optimal strategies depend on the limit to marginal
exposure ω = lim

τ→∞
f ′(τ)

If ω > 0, the interaction becomes close to linear (provided all
exposures become large)

Even for a null ω, the benefit from the knowledge of the network is
positive under most circumstances
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Concluding remarks

Concluding remarks

Linear model of interaction leads to quite specific targeting strategies

Under diminishing returns to exposure, the differences in attention
totals and the ’joint’ impact matter

Value of information almost always positive, related to the
heterogeneity in the network
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